Abstract
Several aspects of the respiratory physiology of a mutant of Bacillus subtilis deficient in menaquinone-7 (MK-7) and in cytochromes were investigated. The mutant, an aromatic amino acid auxotroph blocked at dehydroshikimate reductase, is unable to synthesize MK-7 unless grown in the presence of the common aromatic amino acid intermediate, shikimate. The inability to synthesize MK-7 prevents the mutant from expressing the normal postexponentialphase cytochrome phenotype. When grown in the presence of shikimate, normal levels of these electron transport components are formed. It was found that the intracellular concentration of MK-7 could be predictably regulated by growing the cells with known concentrations of exogenous shikimate. When the mutant was grown under conditions where MK-7 biosynthesis was severely limited, there was a decrease in oxygen uptake and in membrane-associated reduced nicotinamide adenine dinucleotide (NADH) oxidase and succinate oxidase activity. NADH oxidase, but not succinoxidase, could be restored in membrane preparations by the addition of menadione to the reaction mixture. Reduced-minus-oxidized cytochrome difference spectra indicate that an MK-7 deficiency limits electron flow through the cytochrome chain. Furthermore, oxidation-reduction patterns suggest that MK-7 functions between the primary dehydrogenases and the cytochromes. Although the mutant is asporogenous when grown under conditions where MK-7 biosynthesis is limited, the inability to sporulate does not appear to result from lesions in the electron transport system.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRODIE A. F., BALLANTINE J. Oxidative phosphorylation in fractionated bacterial systems. II. The role of vitamin K. J Biol Chem. 1960 Jan;235:226–231. [PubMed] [Google Scholar]
- BRODIE A. F., BALLANTINE J. Oxidative phosphorylation in fractionated bacterial systems. III. Specificity of vitamin K reactivation. J Biol Chem. 1960 Jan;235:232–237. [PubMed] [Google Scholar]
- CHAIX P., PETIT J. F. Etude de différents spectres cytochromiques de Bacillus subtilis. Biochim Biophys Acta. 1956 Oct;22(1):66–71. doi: 10.1016/0006-3002(56)90224-4. [DOI] [PubMed] [Google Scholar]
- DOWNEY R. J. VITAMIN K-MEDIATED ELECTRON TRANSFER IN BACILLUS SUBTILIS. J Bacteriol. 1964 Oct;88:904–911. doi: 10.1128/jb.88.4.904-911.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunphy P. J., Gutnick D. L., Phillips P. G., Brodie A. F. A new natural naphthoquinone in Mycobacterium phlei. Cis-dihydromenaquinone-9, structure and function. J Biol Chem. 1968 Jan 25;243(2):398–407. [PubMed] [Google Scholar]
- Johnson H. V., Martinovic J., Johnson B. C. Vitamin K and the biosynthesis of the glycoprotein prothrombin. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1040–1048. doi: 10.1016/0006-291x(71)90567-5. [DOI] [PubMed] [Google Scholar]
- Knook D. L., Planta R. J. Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen in Aerobacter aerogenes. J Bacteriol. 1971 Feb;105(2):483–488. doi: 10.1128/jb.105.2.483-488.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knook D. L., Planta R. J. Restoration of electron transport in ultraviolet-irradiated membranes of Aerobacter aerogenes. FEBS Lett. 1971 Apr 12;14(1):54–56. doi: 10.1016/0014-5793(71)80273-9. [DOI] [PubMed] [Google Scholar]
- Kröger A., Dadák V., Klingenberg M., Diemer F. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. Eur J Biochem. 1971 Aug 16;21(3):322–333. doi: 10.1111/j.1432-1033.1971.tb01472.x. [DOI] [PubMed] [Google Scholar]
- Kröger A., Dadák V. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur J Biochem. 1969 Dec;11(2):328–340. doi: 10.1111/j.1432-1033.1969.tb00776.x. [DOI] [PubMed] [Google Scholar]
- Kurup C. K., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. XXII. The effect of near ultraviolet irradiation on the succinate oxidase pathway of Mycobacterium phlei. J Biol Chem. 1966 Sep 10;241(17):4016–4022. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martius C., Burkart W., Stalder R. On the mechanism of action of vitamin K in vertebrates and bacteria. FEBS Lett. 1971 Nov 1;18(2):257–260. doi: 10.1016/0014-5793(71)80458-1. [DOI] [PubMed] [Google Scholar]
- NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton N. A., Cox G. B., Gibson F. The function of menaquinone (vitamin K 2 ) in Escherichia coli K-12. Biochim Biophys Acta. 1971 Jul 20;244(1):155–166. doi: 10.1016/0304-4165(71)90132-2. [DOI] [PubMed] [Google Scholar]
- Pereira M., Couri D. Studies on the site of action of dicumarol on prothrombin biosynthesis. Biochim Biophys Acta. 1971 May 18;237(2):348–355. doi: 10.1016/0304-4165(71)90329-1. [DOI] [PubMed] [Google Scholar]
- Rutberg B., Hoch J. A. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J Bacteriol. 1970 Nov;104(2):826–833. doi: 10.1128/jb.104.2.826-833.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHERMAN F., SLONIMSKI P. P. RESPIRATION-DEFICIENT MUTANTS OF YEAST. II. BIOCHEMISTRY. Biochim Biophys Acta. 1964 Jul 15;90:1–15. doi: 10.1016/0304-4165(64)90113-8. [DOI] [PubMed] [Google Scholar]
- Salton M. R., Schmitt M. D. Effects of diphenylamine on carotenoids and menaquinones in bacterial membranes. Biochim Biophys Acta. 1967 May 2;135(2):196–207. doi: 10.1016/0005-2736(67)90114-9. [DOI] [PubMed] [Google Scholar]
- Shah D. V., Suttie J. W. Mechanism of action of vitamin K: evidence for the conversion of a precursor protein to prothrombin in the rat. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1653–1657. doi: 10.1073/pnas.68.7.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swank R. T., Burris R. H. Restoration by ubiquinone of Azotobacter vinelandii reduced nicotinamide adenine dinucleotide oxidase activity. J Bacteriol. 1969 Apr;98(1):311–313. doi: 10.1128/jb.98.1.311-313.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITE D. C. THE FUNCTION OF 2-DEMETHYL VITAMIN K2 IN THE ELECTRON TRANSPORT SYSTEM OF HEMOPHILUS PARAINFLUENZAE. J Biol Chem. 1965 Mar;240:1387–1394. [PubMed] [Google Scholar]
