Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Sep;115(3):1108–1120. doi: 10.1128/jb.115.3.1108-1120.1973

Lysis of Saccharomyces cerevisiae with 2-Deoxy-2-Fluoro-d-Glucose, an Inhibitor of the Cell Wall Glucan Synthesis

P Biely 1, J Kovarik 1, S Bauer 1
PMCID: PMC246360  PMID: 4580558

Abstract

The effect of a synthetic glucose analogue, 2-deoxy-2-fluoro-d-glucose (FG) on growth and glucose metabolism of Saccharomyces cerevisiae was studied. The addition of FG (0.005-0.05%) to a 2% glucose medium resulted in reduction of the initial growth rate and, after several hours, in a complete cessation of the culture growth. These two events were due to extensive lysis of the population which continued long after the period when no more growth was recorded. Electron microscope examination of lysed cells showed that the lysis was a consequence of a dissolution of the cell walls. FG inhibited to a similar extent the initial growth rate and the incorporation of radioactivity from labeled glucose into growing population. The inhibition of radioactivity incorporation from glucose by growing protoplasts was much less. The yeast was found to be extremely FG sensitive whenever the synthesis of new cell wall material was involved. All observations imply that FG interferes mainly with the cell wall formation of S. cerevisiae. A comparison of the FG effects on metabolic activity of protoplasts, simultaneous secretion of mannan-proteins into the growth medium, and the formation of glucan fibrils on the surface of protoplasts demonstrated that the cell wall glucan synthesis is the most FG-sensitive process and evidently the growth-limiting factor in intact cells. FG-resistant cells were selected during growth experiments. They exhibited an altered mode of cell division when grown in the presence of FG.

Full text

PDF
1108

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azam F., Kotyk A. Glucose-6-phosphate as regulator of monosaccharide transport in baker's yeast. FEBS Lett. 1969 Mar;2(5):333–335. doi: 10.1016/0014-5793(69)80057-8. [DOI] [PubMed] [Google Scholar]
  2. Barras D. R. A -glucan endo-hydrolase from Schizosaccharomyces pombe and its role in cell wall growth. Antonie Van Leeuwenhoek. 1972;38(1):65–80. doi: 10.1007/BF02328078. [DOI] [PubMed] [Google Scholar]
  3. Beran K., Holan Z., Baldrián J. The chitin-glucan complex in Saccharomyces cerevisiae. I. IR and x-ray observations. Folia Microbiol (Praha) 1972;17(5):322–330. doi: 10.1007/BF02884098. [DOI] [PubMed] [Google Scholar]
  4. Bessell E. M., Foster A. B., Westwood J. H. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972 Jun;128(2):199–204. doi: 10.1042/bj1280199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biely P., Farkas V., Bauer S. Secretion of -glucanase by Saccharomyces cerevisiae protoplasts. FEBS Lett. 1972 Jun 15;23(2):153–156. doi: 10.1016/0014-5793(72)80328-4. [DOI] [PubMed] [Google Scholar]
  6. Biely P., Krátký Z., Bauer S. Metabolism of 2-deoxy-D glucose by Baker's yeast. IV. Incorporation of 2-deoxy-D-glucose into cell wall mannan. Biochim Biophys Acta. 1972 Feb 11;255(2):631–639. doi: 10.1016/0005-2736(72)90166-6. [DOI] [PubMed] [Google Scholar]
  7. Biely P., Krátký Z., Kovarík J., Bauer S. Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J Bacteriol. 1971 Jul;107(1):121–129. doi: 10.1128/jb.107.1.121-129.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blakley E. R., Myoda T., Spencer J. F. Inhibition of yeast metabolism by 2-deoxyglucose, 6-deoxy-6-fluoroglucose and the corresponding galactose derivatives. Can J Biochem. 1966 Jun;44(6):927–935. doi: 10.1139/o66-109. [DOI] [PubMed] [Google Scholar]
  9. Cabib E., Bowers B. Chitin and yeast budding. Localization of chitin in yeast bud scars. J Biol Chem. 1971 Jan 10;246(1):152–159. [PubMed] [Google Scholar]
  10. Coe E. L. Inhibition of glycolysis in ascites tumor cells preincubated with 2 -deoxy- 2-fluoro- D -glucose. Biochim Biophys Acta. 1972 Apr 21;264(2):319–327. doi: 10.1016/0304-4165(72)90296-6. [DOI] [PubMed] [Google Scholar]
  11. Cortat M., Matile P., Wiemken A. Isolation of glucanase-containing vesicles from budding yeast. Arch Mikrobiol. 1972;82(3):189–205. doi: 10.1007/BF00412191. [DOI] [PubMed] [Google Scholar]
  12. Duntze W., Neumann D., Holzer H. Glucose induced inactivation of malate dehydrogenase in intact yeast cells. Eur J Biochem. 1968 Jan;3(3):326–331. doi: 10.1111/j.1432-1033.1968.tb19533.x. [DOI] [PubMed] [Google Scholar]
  13. Elorza M. V., Sentandreu R. Effect of cycloheximide on yeast cell wall synthesis. Biochem Biophys Res Commun. 1969 Aug 22;36(5):741–747. doi: 10.1016/0006-291x(69)90672-x. [DOI] [PubMed] [Google Scholar]
  14. Feldheim M. E., Augustin H. W., Hofmann E. Uber die Wirkung von 2-Desoxy-D-Glucose auf Atmung und Adenylsäuresystem von Hefezellen. Biochem Z. 1966 Apr 27;344(3):238–255. [PubMed] [Google Scholar]
  15. Gancedo C., Gancedo J. M., Sols A. Metabolite repression of fructose 1,6-diphosphatase in yeast. Biochem Biophys Res Commun. 1967 Mar 9;26(5):528–531. doi: 10.1016/0006-291x(67)90096-4. [DOI] [PubMed] [Google Scholar]
  16. HEREDIA C. F., DELAFUENTE G., SOLS A. METABOLIC STUDIES WITH 2-DEOXYHEXOSES. I. MECHANISMS OF INHIBITION OF GROWTH AND FERMENTATION IN BAKER'S YEAST. Biochim Biophys Acta. 1964 May 11;86:216–223. doi: 10.1016/0304-4165(64)90045-5. [DOI] [PubMed] [Google Scholar]
  17. Heredia C. F., Sols A., DelaFuente G. Specificity of the constitutive hexose transport in yeast. Eur J Biochem. 1968 Aug;5(3):321–329. doi: 10.1111/j.1432-1033.1968.tb00373.x. [DOI] [PubMed] [Google Scholar]
  18. Johnson B. F. Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis. J Bacteriol. 1968 Mar;95(3):1169–1172. doi: 10.1128/jb.95.3.1169-1172.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KIESOW L. [On the uptake of 2-desoxyglucose by living cells. (A contribution to the mechanism of the Pasteur reaction)]. Z Naturforsch B. 1959 Aug-Sep;14B:492–497. [PubMed] [Google Scholar]
  20. Kuo S. C., Lampen J. O. Inhibition by 2-deoxy-D-glucose of synthesis of glycoprotein enzymes by protoplasts of Saccharomyces: relation to inhibition of sugar uptake and metabolism. J Bacteriol. 1972 Aug;111(2):419–429. doi: 10.1128/jb.111.2.419-429.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maitra P. K., Estabrook R. W. Studies of baker's yeast metabolism. II. The role of adenine nucleotides and inorganic phosphate in the control of respiration during alcohol oxidation. Arch Biochem Biophys. 1967 Jul;121(1):129–139. doi: 10.1016/0003-9861(67)90017-3. [DOI] [PubMed] [Google Scholar]
  22. Maitra P. K., Lobo Z. Control of glycolytic enzyme synthesis in yeast by products of the hexokinase reaction. J Biol Chem. 1971 Jan 25;246(2):489–499. [PubMed] [Google Scholar]
  23. Marchant R., Smith D. G. Bud formation in Saccharomyces cerevisiae and a comparison with the mechanism of cell division in other yeasts. J Gen Microbiol. 1968 Sep;53(2):163–169. doi: 10.1099/00221287-53-2-163. [DOI] [PubMed] [Google Scholar]
  24. Megnet R. Effect of 2-deoxyglucose on Schizosaccharomyces pombe. J Bacteriol. 1965 Oct;90(4):1032–1035. doi: 10.1128/jb.90.4.1032-1035.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Necas O. Cell wall synthesis in yeast protoplasts. Bacteriol Rev. 1971 Jun;35(2):149–170. doi: 10.1128/br.35.2.149-170.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Necas O., Svoboda A., Kopecká M. The effect of cycloheximide (actidione) on cell wall synthesis in yeast protoplasts. Exp Cell Res. 1968 Oct;53(1):291–293. doi: 10.1016/0014-4827(68)90378-9. [DOI] [PubMed] [Google Scholar]
  27. SOLS A., DE LA FUENTE G., VILLARPALASI C., ASENSIO C. Substrate specificity and some other properties of baker's yeast hexokinase. Biochim Biophys Acta. 1958 Oct;30(1):92–101. doi: 10.1016/0006-3002(58)90245-2. [DOI] [PubMed] [Google Scholar]
  28. Sentandreu R., Northcote D. H. Yeast cell-wall synthesis. Biochem J. 1969 Nov;115(2):231–240. doi: 10.1042/bj1150231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steiner S., Lester R. L. Studies on the diversity of inositol-containing yeast phospholipids: incorporation of 2-deoxyglucose into lipid. J Bacteriol. 1972 Jan;109(1):81–88. doi: 10.1128/jb.109.1.81-88.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Witt I., Kronau R., Holzer H. Repression von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase und Malatsynthase in Hefe durch Glucose. Biochim Biophys Acta. 1966 Jun 15;118(3):522–537. [PubMed] [Google Scholar]
  31. Woodward B., Taylor N. F., Brunt R. V. Effect of 3-deoxy-3-fluoro-D-glucose on glycolytic intermediates and adenine nucleotides in resting cells of Saccharomyces cerevisiae. Biochem Pharmacol. 1971 Jun;20(6):1071–1077. doi: 10.1016/0006-2952(71)90336-4. [DOI] [PubMed] [Google Scholar]
  32. Woodward B., Taylor N. F., Brunt R. V. The effect of 3-deoxy-3-fluoro-d-glucose on Saccharomyces cerevisiae. Biochem J. 1969 Sep;114(2):445–447. doi: 10.1042/bj1140445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zemek J., Bauer S. Metabolism of 2-deoxy-D-glucose in Baker's yeast. V. Formation of 2-deoxy- , '-trehalose. Biochim Biophys Acta. 1972 May 16;264(3):393–397. doi: 10.1016/0304-4165(72)90001-3. [DOI] [PubMed] [Google Scholar]
  34. van Steveninck J. Transport-associated phosphorylation of 2-deoxy-D-glucose in yeast. Biochim Biophys Acta. 1968 Nov 5;163(3):386–394. doi: 10.1016/0005-2736(68)90123-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES