Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Oct;116(1):41–47. doi: 10.1128/jb.116.1.41-47.1973

NH2-Terminal Amino Acid Distribution and Amino Acid Composition of Streptococcus faecalis R Soluble and Ribosomal Proteins

Charles E Samuel a,1, Cheryl L Murray a, Jesse C Rabinowitz a
PMCID: PMC246388  PMID: 4200842

Abstract

The NH2-terminal amino acid distribution of Streptococcus faecalis R soluble and ribosomal proteins isolated from cells at different stages of growth on either folate-sufficient or folate-deficient medium was determined by the dinitrophenyl method. The NH2-terminal residues do not follow the random distribution observed for the total amino acid composition of S. faecalis soluble and ribosomal proteins. Methionine and alanine occur most frequently; serine, threonine, aspartic and glutamic acids, and glycine are also present at the NH2-terminal position of S. faecalis R proteins. The absence of folic acid yields cells that are incapable of formylating methionyl-transfer ribonucelic acid tRNAfMet, but does not affect either the qualitative or quantitative NH2-terminal distribution of total soluble or total ribosomal proteins compared to cells grown with folate. A small quantitative difference was observed in the frequency of distribution of certain amino acids at the NH2-termini between log and stationary phase soluble proteins. The amino acid residues found at the NH2-terminal position of S. faecalis proteins are qualitatively similar to those reported for several other organisms.

Full text

PDF
41

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M. On the release of the formyl group from nascent protein. J Mol Biol. 1968 May 14;33(3):571–589. doi: 10.1016/0022-2836(68)90307-0. [DOI] [PubMed] [Google Scholar]
  2. Deibel R. H. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. doi: 10.1128/jb.87.5.988-992.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
  4. FRAENKEL-CONRAT H. Degradation of tobacco mosaic virus with acetic acid. Virology. 1957 Aug;4(1):1–4. doi: 10.1016/0042-6822(57)90038-7. [DOI] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  6. Horikoshi K., Doi R. H. The NH2-terminal residues of Bacillus subtilis proteins. J Biol Chem. 1968 May 10;243(9):2381–2384. [PubMed] [Google Scholar]
  7. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  8. Kerwar S. S., Weissbach H., Glenner G. G. An aminopeptidase activity associated with brain ribosomes. Arch Biochem Biophys. 1971 Mar;143(1):336–337. doi: 10.1016/0003-9861(71)90215-3. [DOI] [PubMed] [Google Scholar]
  9. LEVY A. L. A paper chromatographic method for the quantitative estimation of amino-acids. Nature. 1954 Jul 17;174(4420):126–127. doi: 10.1038/174126a0. [DOI] [PubMed] [Google Scholar]
  10. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Livingston D. M., Leder P. Deformylation and protein biosynthesis. Biochemistry. 1969 Jan;8(1):435–443. doi: 10.1021/bi00829a059. [DOI] [PubMed] [Google Scholar]
  12. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  13. Lundquist R. E., Lazar J. M., Klein W. H., Clark J. M., Jr Translation of satellite tobacco necrosis virus ribonucleic acid. II. Initiation of in vitro translation in procaryotic and eucaryotic systems. Biochemistry. 1972 May 23;11(11):2014–2019. doi: 10.1021/bi00761a004. [DOI] [PubMed] [Google Scholar]
  14. Marcker K. A., Smith A. E. On the universality of the mechanism of polypeptide chain initiation. Bull Soc Chim Biol (Paris) 1969;51(10):1453–1458. [PubMed] [Google Scholar]
  15. Marcker K. The formation of N-formyl-methionyl-sRNA. J Mol Biol. 1965 Nov;14(1):63–70. doi: 10.1016/s0022-2836(65)80230-3. [DOI] [PubMed] [Google Scholar]
  16. Marshall M., Cohen P. P. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. I. Isolation and subunit structure. J Biol Chem. 1972 Mar 25;247(6):1641–1653. [PubMed] [Google Scholar]
  17. Matheson A. T., Dick A. J. A possible role in protein synthesis for the ribosomal-bound aminopeptidase in Escherichia coli B. FEBS Lett. 1970 Feb 16;6(3):235–237. doi: 10.1016/0014-5793(70)80066-7. [DOI] [PubMed] [Google Scholar]
  18. McCarthy K. F., Lovenberg W. N-formylmethionine: the N terminus of Clostridium pasteurianum rubreodoxin. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1053–1057. doi: 10.1016/0006-291x(70)90900-9. [DOI] [PubMed] [Google Scholar]
  19. Nomura M. Bacterial ribosome. Bacteriol Rev. 1970 Sep;34(3):228–277. doi: 10.1128/br.34.3.228-277.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pine M. J., Gordon B., Sarimo S. S. Protein initiation without folate in Streptococcus faecium. Biochim Biophys Acta. 1969 Apr 22;179(2):439–447. doi: 10.1016/0005-2787(69)90052-5. [DOI] [PubMed] [Google Scholar]
  21. Rho H. M., DeBusk A. G. NH 2 -terminal residues of Neurospora crassa proteins. J Bacteriol. 1971 Sep;107(3):840–845. doi: 10.1128/jb.107.3.840-845.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SNELL E. E., RADIN N. S., IKAWA M. The nature of D-alanine in lactic acid bacteria. J Biol Chem. 1955 Dec;217(2):803–818. [PubMed] [Google Scholar]
  23. SPAHR P. F. Amino acid composition of ribosomes from Escherichia coli. J Mol Biol. 1962 May;4:395–406. doi: 10.1016/s0022-2836(62)80020-5. [DOI] [PubMed] [Google Scholar]
  24. Samuel C. E., D'Ari L., Rabinowitz J. C. Evidence against the folate-mediated formylation of formyl-accepting methionyl transfer ribonucleic acid in Streptococcus faecalis R. J Biol Chem. 1970 Oct 10;245(19):5115–5121. [PubMed] [Google Scholar]
  25. Samuel C. E., Murray C. L., Rabinowitz J. C. Methionine transfer ribonucleic acid from folate-sufficient and folate-deficient Streptococcus faecalis R. J Biol Chem. 1972 Nov 10;247(21):6856–6865. [PubMed] [Google Scholar]
  26. Sarimo S. S., Pine M. J. Taxonomic comparison of the amino termini of microbial cell proteins. J Bacteriol. 1969 May;98(2):368–374. doi: 10.1128/jb.98.2.368-374.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schnebli H. P., Vatter A. E., Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition. J Biol Chem. 1970 Mar 10;245(5):1122–1127. [PubMed] [Google Scholar]
  28. Sharon N. The bacterial cell wall. Sci Am. 1969 May;220(5):92–98. doi: 10.1038/scientificamerican0569-92. [DOI] [PubMed] [Google Scholar]
  29. Snell E. E., Mitchell H. K. Purine and Pyrimidine as Growth Substances for Lactic Acid Bacteria. Proc Natl Acad Sci U S A. 1941 Jan 15;27(1):1–7. doi: 10.1073/pnas.27.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stokes J. L. Substitution of Thymine for "Folic Acid" in the Nutrition of Lactic Acid Bacteria. J Bacteriol. 1944 Aug;48(2):201–209. doi: 10.1128/jb.48.2.201-209.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takeda M., Webster R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1487–1494. doi: 10.1073/pnas.60.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WALLER J. P., HARRIS J. I. Studies on the composition of the protein from Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1961 Jan 15;47:18–23. doi: 10.1073/pnas.47.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WALLER J. P. THE NH2-TERMINAL RESIDUES OF THE PROTEINS FROM CELL-FREE EXTRACTS OF E. COLI. J Mol Biol. 1963 Nov;7:483–496. doi: 10.1016/s0022-2836(63)80096-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES