Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Oct;116(1):346–354. doi: 10.1128/jb.116.1.346-354.1973

Reduced Nicotinamide Adenine Dinucleotide Oxidase Activity and H2O2 Formation of Mycoplasma pneumoniae

Iolanda E Low 1, Saundra M Zimkus 2
PMCID: PMC246429  PMID: 4147646

Abstract

Cell-free extracts of Mycoplasma pneumoniae showed two distinct reduced nicotinamide adenine dinucleotide (NADH2) oxidase activities in the supernatant fraction. By ammonium sulfate fractionation and polyacrylamide gel electrophoresis, one activity not requiring flavine co-factors was precipitated by 50 to 70% ammonium sulfate concentration and identified with a slower-moving band on acrylamide gel electrophoresis; a second NADH2 oxidase activity was flavine mononucleotide (FMN) dependent and associated with a more rapidly moving band; it could only be partially precipitated by ammonium sulfate concentrations ranging from 50 to 100%. Studies with alternate electron acceptors indicated the presence of a menadione, a 2,6-dichlorophenol indophenol and a very weak ferricyanide oxido-reductase activity, but no cytochrome c oxido-reductase, in the cell-free preparations. The NADH2 oxidase activities of all fractions were relatively cyanide insensitive and were only minimally inhibited by flavoprotein and other respiratory chain inhibitors. H2O2 formation was negligible unless FMN, but not flavine adenine dinucleotide (FAD), was added to the crude NADH2 oxidase system; upon fractionation and electrophoresis, the H2O2 formation was associated with the FMN-dependent, more rapidly moving NADH2 oxidase band. This FMN-dependent NADH2 oxidase-H2O2 generating system may be a mechanism for the H2O2 formation observed during glucose oxidation in the intact organism.

Full text

PDF
346

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAGAN R. H., KARNOVSKY M. L. ENZYMATIC BASIS OF THE RESPIRATORY STIMULATION DURING PHAGOCYTOSIS. Nature. 1964 Oct 17;204:255–257. doi: 10.1038/204255a0. [DOI] [PubMed] [Google Scholar]
  2. Cherry J. D., Taylor-Robinson D. Growth and Pathogenesis of Mycoplasma mycoides var. capri in Chicken Embryo Tracheal Organ Cultures. Infect Immun. 1970 Oct;2(4):431–438. doi: 10.1128/iai.2.4.431-438.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen G., Somerson N. L. Glucose-dependent secretion and destruction of hydrogen peroxide by Mycoplasma pneumoniae. J Bacteriol. 1969 May;98(2):547–551. doi: 10.1128/jb.98.2.547-551.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen G., Somerson N. L. Mycoplasma pneumoniae: hydrogen peroxide secretion and its possible role in virulence. Ann N Y Acad Sci. 1967 Jul 28;143(1):85–87. doi: 10.1111/j.1749-6632.1967.tb27648.x. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. DOLIN M. I. Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens. I. Relation of peroxide to the overall reaction. J Bacteriol. 1959 Apr;77(4):383–392. doi: 10.1128/jb.77.4.383-392.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOLIN M. I. Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens. II. Purification of the oxidase: relation to cytochrome c reductase. J Bacteriol. 1959 Apr;77(4):393–402. doi: 10.1128/jb.77.4.393-402.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DOLIN M. I. The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. III. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. J Biol Chem. 1957 Mar;225(1):557–573. [PubMed] [Google Scholar]
  9. DOLIN M. I., WOOD N. P. The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. V. A flavin mononucleotike-containing diaphorase. J Biol Chem. 1960 Jun;235:1809–1814. [PubMed] [Google Scholar]
  10. HOSKINS D. D., WHITELEY H. R., MACKLER B. The reduced diphosphopyridine nucleotide oxidase of Streptococcus faecalis: purification and properties. J Biol Chem. 1962 Aug;237:2647–2651. [PubMed] [Google Scholar]
  11. Holmes B., Day N., Haseman J., Good R. A. Development of bactericidal capacity and phagocytosis-associated metabolism of fetal pig leukocytes. Infect Immun. 1972 Feb;5(2):232–237. doi: 10.1128/iai.5.2.232-237.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. IYER G. Y., QUESTEL J. H. NADPH and NADH oxidation by guinea pig polymorphonuclear leucocytes. Can J Biochem Physiol. 1963 Feb;41:427–434. [PubMed] [Google Scholar]
  13. KAPLAN N. O. Mechanisms of electron transport in pyridine nucleotide and flavin systems. Bacteriol Rev. 1955 Dec;19(4):234–250. [PubMed] [Google Scholar]
  14. Kaplan J. C., Beutler E. Electrophoresis of red cell NADH- and NADPH-diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem Biophys Res Commun. 1967 Nov 30;29(4):605–610. doi: 10.1016/0006-291x(67)90529-3. [DOI] [PubMed] [Google Scholar]
  15. LOW I. E., EATON M. D. REPLICATION OF MYCOPLASMA PNEUMONIAE IN BROTH CULTURE. J Bacteriol. 1965 Mar;89:725–728. doi: 10.1128/jb.89.3.725-728.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Low I. E., Eaton M. D., Proctor P. Relation of catalase to substrate utilization by Mycoplasma pneumoniae. J Bacteriol. 1968 Apr;95(4):1425–1430. doi: 10.1128/jb.95.4.1425-1430.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Low I. E. Effect of Medium on H(2)O(2) Levels and Peroxidase-Like Activity by Mycoplasma pneumoniae. Infect Immun. 1971 Jan;3(1):80–86. doi: 10.1128/iai.3.1.80-86.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pollack J. D., Razin S., Cleverdon R. C. Localization of Enzymes in Mycoplasma. J Bacteriol. 1965 Sep;90(3):617–622. doi: 10.1128/jb.90.3.617-622.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pollack J. D., Somerson N. L., Senterfit L. B. Isolation, Characterization, and Immunogenicity of Mycoplasma pneumoniae Membranes. Infect Immun. 1970 Sep;2(3):326–339. doi: 10.1128/iai.2.3.326-339.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RAZIN S. FACTORS INFLUENCING OSMOTIC FRAGILITY OF MYCOPLASMA. J Gen Microbiol. 1964 Sep;36:451–459. doi: 10.1099/00221287-36-3-451. [DOI] [PubMed] [Google Scholar]
  22. Rodwell A. W. The nutrition and metabolism of mycoplasma: Progress and problems. Ann N Y Acad Sci. 1967 Jul 28;143(1):88–109. doi: 10.1111/j.1749-6632.1967.tb27649.x. [DOI] [PubMed] [Google Scholar]
  23. SMITH S. L., VANDEMARK P. J., FABRICANT J. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. I. LACTATE OXIDATION BY MYCOPLASMA GALLISEPTICUM. J Bacteriol. 1963 Nov;86:893–897. doi: 10.1128/jb.86.5.893-897.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Somerson N. L., Walls B. E., Chanock R. M. Hemolysin of Mycoplasma pneumoniae: tentative identification as a peroxide. Science. 1965 Oct 8;150(3693):226–228. doi: 10.1126/science.150.3693.226. [DOI] [PubMed] [Google Scholar]
  25. VANDEMARK P. J., SMITH P. F. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS. J Bacteriol. 1964 Jul;88:122–129. doi: 10.1128/jb.88.1.122-129.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walker G. A., Kilgour G. L. Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Arch Biochem Biophys. 1965 Sep;111(3):534–539. doi: 10.1016/0003-9861(65)90232-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES