Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Oct;116(1):384–391. doi: 10.1128/jb.116.1.384-391.1973

Purification and Characterization of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase from a Nitrogen-Fixing Bacterium

Duane C Yoch 1
PMCID: PMC246434  PMID: 4147648

Abstract

Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase.

Full text

PDF
384

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M., JAGENDORF A. T. A TPNH diaphorase from chloroplasts. Arch Biochem Biophys. 1956 Dec;65(2):475–490. doi: 10.1016/0003-9861(56)90207-7. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnon D. I. Role of ferredoxin in photosynthesis. Naturwissenschaften. 1969 Jun;56(6):295–305. doi: 10.1007/BF00602160. [DOI] [PubMed] [Google Scholar]
  5. BUCHANAN B. B., BACHOFEN R., ARNON D. I. ROLE OF FERREDOXIN IN THE REDUCTIVE ASSIMILATION OF CO2 AND ACETATE BY EXTRACTS OF THE PHOTOSYNTHETIC BACTERIUM, CHROMATIUM. Proc Natl Acad Sci U S A. 1964 Sep;52:839–847. doi: 10.1073/pnas.52.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benemann J. R., Valentine R. C. The pathways of nitrogen fixation. Adv Microb Physiol. 1972;8:59–104. doi: 10.1016/s0065-2911(08)60188-5. [DOI] [PubMed] [Google Scholar]
  7. Benemann J. R., Yoch D. C., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by Azotobacter. I. Azotoflavin as an electron carrier. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1079–1086. doi: 10.1073/pnas.64.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benemann J. R., Yoch D. C., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by azotobacter. 3. Requirements for NADPH-supported nitrogenase activity. Biochim Biophys Acta. 1971 Mar 2;226(2):205–212. doi: 10.1016/0005-2728(71)90087-9. [DOI] [PubMed] [Google Scholar]
  9. Buchanan B. B., Bachofen R. Ferredoxin-dependent reduction of nicotinamide-adenine dinucleotides with hydrogen gas by subcellular preparations from the photosynthetic bacterium, Chromatium. Biochim Biophys Acta. 1968 Nov 26;162(4):607–610. doi: 10.1016/0005-2728(68)90067-4. [DOI] [PubMed] [Google Scholar]
  10. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  11. Enzymatic -oxidation. VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. J Biol Chem. 1972 Apr 10;247(7):2109–2116. [PubMed] [Google Scholar]
  12. Fisher R. J., Wilson P. W. Pyruvate-supported nitrogen fixation by cell-free extracts of Bacillus polymyxa. Biochem J. 1970 May;117(5):1023–1024. doi: 10.1042/bj1171023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GRAU F. H., WILSON P. W. Physiology of nitrogen fixation by Bacillus polymyxa. J Bacteriol. 1962 Mar;83:490–496. doi: 10.1128/jb.83.3.490-496.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jungermann K., Leimenstoll G., Rupprecht E., Thauer R. K. Demonstration of NADH-ferredoxin reductase in two caccharolytic Clostridia. Arch Mikrobiol. 1971;80(4):370–372. doi: 10.1007/BF00406223. [DOI] [PubMed] [Google Scholar]
  15. Jungermann K., Rupprecht E., Ohrloff C., Thauer R., Decker K. Regulation of the reduced nicotinamide adenine dinucleotide-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):960–963. [PubMed] [Google Scholar]
  16. KEISTER D. L., SAN PIETRO A., STOLZENBACH F. E. Pyridine nucleotide transhydrogenase from spinach. I. Purification and properties. J Biol Chem. 1960 Oct;235:2989–2996. [PubMed] [Google Scholar]
  17. KEISTER D. L., SAN PIETRO A., STOLZENBACH F. E. Pyridine nucleotide transhydrogenase from spinach. II. Requirement of enzyme for photochemical accumulation of reduced pyridine nucleotides. Arch Biochem Biophys. 1962 Aug;98:235–244. doi: 10.1016/0003-9861(62)90178-9. [DOI] [PubMed] [Google Scholar]
  18. LOVENBERG W., BUCHANAN B. B., RABINOWITZ J. C. STUDIES ON THE CHEMICAL NATURE OF CLOSTRIDIAL FERREDOXIN. J Biol Chem. 1963 Dec;238:3899–3913. [PubMed] [Google Scholar]
  19. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  20. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  21. Thauer R. K., Rupprecht E., Ohrloff C., Jungermann K., Decker K. Regulation of the reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):954–959. [PubMed] [Google Scholar]
  22. Tsai R. L., Gunsalus I. C., Dus K. Composition and structure of camphor hydroxylase components and homology between putidaredoxin and adrenodoxin. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1300–1306. doi: 10.1016/0006-291x(71)90160-4. [DOI] [PubMed] [Google Scholar]
  23. Valentine R. C., Brill W. J., Wolfe R. S. ROLE OF FERREDOXIN IN PYRIDINE NUCLEOTIDE REDUCTION. Proc Natl Acad Sci U S A. 1962 Oct;48(10):1856–1860. doi: 10.1073/pnas.48.10.1856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weaver P., Tinker K., Valentine R. C. Ferredoxin linked DPN reduction by the photosynthetic bacteria Chromatium and Chlorobium. Biochem Biophys Res Commun. 1965 Nov 8;21(3):195–201. doi: 10.1016/0006-291x(65)90271-8. [DOI] [PubMed] [Google Scholar]
  25. Yoch D. C., Arnon D. I. The nitrogen fixation system of photosynthetic bacteria. II. Chromatium nitrogenase activity linked to photochemically generated assimilatory power. Biochim Biophys Acta. 1970 Mar 3;197(2):180–184. doi: 10.1016/0005-2728(70)90029-0. [DOI] [PubMed] [Google Scholar]
  26. Yoch D. C., Arnon D. I. Two biologically active ferredoxins from the aerobic nitrogen-fixing bacteriu, Azotobacter vinelandii. J Biol Chem. 1972 Jul 25;247(14):4514–4520. [PubMed] [Google Scholar]
  27. Yoch D. C., Benemann J. R., Arnon D. I., Valentine R. C., Russell S. A. An endogenous electron carrier for the nitrogenase system of Rhizobium bacteroids. Biochem Biophys Res Commun. 1970 Mar 12;38(5):838–842. doi: 10.1016/0006-291x(70)90795-3. [DOI] [PubMed] [Google Scholar]
  28. Yoch D. C., Benemann J. R., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by Azotobacter. II. Isolation and function of a new type of ferredoxin. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1404–1410. doi: 10.1073/pnas.64.4.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yoch D. C. The electron transport system in nitrogen fixation by azotobacter. IV. Some oxidation-reduction properties of azotoflavin. Biochem Biophys Res Commun. 1972 Oct 17;49(2):335–342. doi: 10.1016/0006-291x(72)90415-9. [DOI] [PubMed] [Google Scholar]
  30. Zanetti G., Forti G. Studies on the triphosphopyridine nucleotide-cytochrome f reductase of chloroplasts. J Biol Chem. 1966 Jan 25;241(2):279–285. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES