Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Dec;116(3):1096–1099. doi: 10.1128/jb.116.3.1096-1099.1973

Nutritional Alteration of the Fatty Acid Composition of a Thermophilic Bacillus Species

Harlow H Daron 1
PMCID: PMC246461  PMID: 4752936

Abstract

The fatty acid composition of a thermophilic Bacillus sp. was altered by the addition of isobutyrate, isovalerate, α-methylbutyrate, leucine, and isoleucine to the growth medium. With isobutyrate, 81% of the fatty acids had 16 carbon atoms and 79% were iso-fatty acids with an even number of carbon atoms. With leucine, 58% of the fatty acids had 15 carbon atoms and 86% were iso-fatty acids with an odd number of carbon atoms. With isoleucine, 72% of the fatty acids had 17 carbon atoms and 88% were anteiso-fatty acids with an odd number of carbon atoms. Thus, by altering the composition of the growth medium, cells were produced in which the majority of the fatty acids had either 15, 16, or 17 carbons and belonged to each of the three groups of branched-chain fatty acids. The wide variation observed in the fatty acid composition makes it unlikely that any specific branched-chain fatty acid is required for vital functions.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulla L. A., Bennett G. A., Shotwell O. L. Physiology of Sporeforming Bacteria Associated with Insects II. Lipids of Vegetative Cells. J Bacteriol. 1970 Dec;104(3):1246–1253. doi: 10.1128/jb.104.3.1246-1253.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daron H. H. Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol. 1970 Jan;101(1):145–151. doi: 10.1128/jb.101.1.145-151.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daron H. H. Occurrence of isocitrate lyase in a thermophilic bacillus species. J Bacteriol. 1967 Feb;93(2):703–710. doi: 10.1128/jb.93.2.703-710.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KANEDA T. Biosynthesis of branched chain fatty acids. II. Microbial synthesis of branched long chain fatty acids from certain short chain fatty acid substrates. J Biol Chem. 1963 Apr;238:1229–1235. [PubMed] [Google Scholar]
  5. KANEDA T. Valine as a source of the branched short chain precursor in the biosynthesis if iso-C14, iso-C15, iso-C16 and iso-C17 fatty acids by Bacillus subtitlis. Biochem Biophys Res Commun. 1963 Feb 6;10:283–287. doi: 10.1016/0006-291x(63)90431-5. [DOI] [PubMed] [Google Scholar]
  6. Kaneda T. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis. Can J Microbiol. 1966 Jun;12(3):501–514. doi: 10.1139/m66-073. [DOI] [PubMed] [Google Scholar]
  7. Kaneda T. Fatty acids in Bacillus larvae, Bacillus lentimorbus, and Bacillus popilliae. J Bacteriol. 1969 Apr;98(1):143–146. doi: 10.1128/jb.98.1.143-146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaneda T. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol. 1967 Mar;93(3):894–903. doi: 10.1128/jb.93.3.894-903.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaneda T. Fatty acids in the genus Bacillus. II. Similarity in the fatty acid compositions of Bacillus thuringiensis, Bacillus anthracis, and Bacillus cereus. J Bacteriol. 1968 Jun;95(6):2210–2216. doi: 10.1128/jb.95.6.2210-2216.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneda T. Major occurrence of cis-delta 5 fatty acids in three psychrophilic species of Bacillus. Biochem Biophys Res Commun. 1971 Apr 16;43(2):298–302. doi: 10.1016/0006-291x(71)90752-2. [DOI] [PubMed] [Google Scholar]
  11. Kates M. Biosynthesis of lipids in microorganisms. Annu Rev Microbiol. 1966;20:13–44. doi: 10.1146/annurev.mi.20.100166.000305. [DOI] [PubMed] [Google Scholar]
  12. LENNARZ W. J. The role of isoleucine in the biosynthesis of branched-chain fatty acids by Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1961 Nov 1;6:112–116. doi: 10.1016/0006-291x(61)90395-3. [DOI] [PubMed] [Google Scholar]
  13. Scandella C. J., Kornberg A. Biochemical studies of bacterial sporulation and germination. XV. Fatty acids in growth, sporulation, and germination of Bacillus megaterium. J Bacteriol. 1969 Apr;98(1):82–86. doi: 10.1128/jb.98.1.82-86.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shen P. Y., Coles E., Foote J. L., Stenesh J. Fatty acid distribution in mesophilic and thermophilic strains of the genus Bacillus. J Bacteriol. 1970 Aug;103(2):479–481. doi: 10.1128/jb.103.2.479-481.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weerkamp A., Heinen W. Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. J Bacteriol. 1972 Jan;109(1):443–446. doi: 10.1128/jb.109.1.443-446.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Willecke K., Pardee A. B. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem. 1971 Sep 10;246(17):5264–5272. [PubMed] [Google Scholar]
  17. Yao M., Walker H. W., Lillard D. A. Fatty acids from vegetative cells and spores of Bacillus stearothermophilus. J Bacteriol. 1970 Jun;102(3):877–878. doi: 10.1128/jb.102.3.877-878.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES