Abstract
The major phospholipids of two strains of Bdellovibrio bacteriovorus were characterized. Both strain UKi1, which is obligately saprophytic, and strain UKi2, which is facultatively parasitic, contained phosphatidylethanolamine and phosphatidylglycerol as their major glycerophosphatides. A branched, 15-carbon fatty acid is the major component of these alkali-labile lipids. Absent from UKi1 but present in UKi2 were three alkali-stable lipids (compounds 8, 9, and 11) which appear to be phosphosphingolipids. After acid hydrolysis, both compound 8 and 9 yield the identical phosphorus-containing substance that is water soluble, dipolar ionic, and ninhydrin positive. This substance appears to contain a C-P bond since Pi could not be released from this substance by treatment with alkaline phosphatase or by very harsh mineral acid treatment. Based on chromatographic comparisons, this phosphonate appears to be a novel lipid constituent. Upon degradation, compound 8 yields 1 mol of dihydroxy long-chain base and compound 9 yields 1 mol of a trihydroxy long-chain base. These bases appear to have a 17-carbon, possibly branched, structure based on gas-liquid chromatography retention times. Degradation of both sphingolipids yields a mixture of hydroxy fatty acids, the major component being a branched, 15-carbon hydroxy acid.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Burnham J. C., Hashimoto T., Conti S. F. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J Bacteriol. 1970 Mar;101(3):997–1004. doi: 10.1128/jb.101.3.997-1004.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter H. E., Gaver R. C. Improved reagent for trimethylsilylation of sphingolipid bases. J Lipid Res. 1967 Jul;8(4):391–395. [PubMed] [Google Scholar]
- Glonek T., Henderson T. O., Hilderbrand R. L., Myers T. C. Biological phosphonates: determination by phosphorus-31 nuclear magnetic resonance. Science. 1970 Jul 10;169(3941):192–194. doi: 10.1126/science.169.3941.192. [DOI] [PubMed] [Google Scholar]
- Harkness D. R. Bacterial growth on aminoalkylphosphonic acids. J Bacteriol. 1966 Sep;92(3):623–627. doi: 10.1128/jb.92.3.623-627.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlsson K. A. Sphingolipid long chain bases. Lipids. 1970 Nov;5(11):878–891. doi: 10.1007/BF02531119. [DOI] [PubMed] [Google Scholar]
- Kemp P., Dawson R. M. Isolation of a new phospholipid, phosphatidyl-N-(2-hydroxyethyl)-alanine, from rumen protozoa. Biochem J. 1969 Jul;113(3):555–558. doi: 10.1042/bj1130555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp P., Dawson R. M., Klein R. A. A new bacterial sphingophospholipid containing 3-aminopropane-1,2-diol. Biochem J. 1972 Nov;130(1):221–227. doi: 10.1042/bj1300221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kittredge J. S., Isbell A. F., Hughes R. R. Isolation and characterization of the N-methyl derivatives of 2-aminoethylphosphonic acid from the sea anemone, Anthopleura xanthogrammica. Biochemistry. 1967 Jan;6(1):289–295. doi: 10.1021/bi00853a045. [DOI] [PubMed] [Google Scholar]
- Kittredge J. S., Roberts E. A carbon-phosphorus bond in nature. Science. 1969 Apr 4;164(3875):37–42. doi: 10.1126/science.164.3875.37. [DOI] [PubMed] [Google Scholar]
- Korn E. D., Dearborn D. G., Fales H. M., Sokoloski E. A. Phosphonoglycan. A major polysaccharide constituent of the amoeba plasma membrane contains 2-aminoethylphosphonic acid and 1-hydroxy-2-aminoethylphosphonic acid. J Biol Chem. 1973 Mar 25;248(6):2257–2259. [PubMed] [Google Scholar]
- Kunsman J. E. Characterization of the lipids of six strains of Bacteroides ruminicola. J Bacteriol. 1973 Mar;113(3):1121–1126. doi: 10.1128/jb.113.3.1121-1126.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaBach J. P., White D. C. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J Lipid Res. 1969 Sep;10(5):528–534. [PubMed] [Google Scholar]
- Lester R. L., Steiner M. R. The occurrence of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. J Biol Chem. 1968 Sep 25;243(18):4889–4893. [PubMed] [Google Scholar]
- MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
- Owens K. A two-dimensional thin-layer chromatographic procedure for the estimation of plasmalogens. Biochem J. 1966 Aug;100(2):354–361. doi: 10.1042/bj1000354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAMBASIVARAO K., MCCLUER R. H. THIN-LAYER CHROMATOGRAPHIC SEPARATION OF SPHINGOSINE AND RELATED BASES. J Lipid Res. 1963 Jan;4:106–108. [PubMed] [Google Scholar]
- SCHWEIGER A. [Separation of simple sugars on cellulose lavers]. J Chromatogr. 1962 Nov;9:374–376. doi: 10.1016/s0021-9673(00)80803-1. [DOI] [PubMed] [Google Scholar]
- Sarma G. R., Chandramouli V., Venkitasubramanian T. A. Occurrence of phosphonolipids in mycobacteria. Biochim Biophys Acta. 1970 Dec 15;218(3):561–563. [PubMed] [Google Scholar]
- Seidler R. J., Starr M. P. Isolation and characterization of host-independent Bdellovibrios. J Bacteriol. 1969 Nov;100(2):769–785. doi: 10.1128/jb.100.2.769-785.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner M. R., Lester R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Feb 21;260(2):222–243. doi: 10.1016/0005-2760(72)90035-5. [DOI] [PubMed] [Google Scholar]
- Steiner S., Lester R. L. Studies on the diversity of inositol-containing yeast phospholipids: incorporation of 2-deoxyglucose into lipid. J Bacteriol. 1972 Jan;109(1):81–88. doi: 10.1128/jb.109.1.81-88.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waechter C. J., Steiner M. R., Lester R. L. Regulation of phosphatidylcholine biosynthesis by the methylation pathway in Saccharomyces cerevisiae. J Biol Chem. 1969 Jun 25;244(12):3419–3422. [PubMed] [Google Scholar]
- ZELEZNICK L. D., MYERS T. C., TITCHENER E. B. GROWTH OF ESCHERICHIA COLI ON METHYL- AND ETHYLPHOSPHONIC ACIDS. Biochim Biophys Acta. 1963 Nov 15;78:546–547. doi: 10.1016/0006-3002(63)90921-1. [DOI] [PubMed] [Google Scholar]


