Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Jan;117(1):48–55. doi: 10.1128/jb.117.1.48-55.1974

Characterization of the Antigenic Subunits of the Envelope Protein of Yersinia pestis

Larry G Bennett 1, Thomas G Tornabene 1
PMCID: PMC246523  PMID: 4203000

Abstract

Chemical, physical, and immunological properties of the envelope antigen of Yersinia pestis strains have been investigated. The antigen consists of two components with isoelectric points (pI) of 4.6 and 4.8. One component (pI 4.6) is a protein bound to a small carbohydrate moiety identified as an oligomeric galactan; the other component (pI 4.8) is a simple protein. These two components are antigenically identical. In buffered solution, the antigen exists as aggregates of molecular weights larger than 300,000. The aggregates dissociate into a variety of smaller molecular weight forms depending on the nature of the treatment for dissociation. Each aggregate can be further dissociated into a single antigenic subunit fraction containing protein and glycoprotein species with molecular weights in the range from 15,000 to 17,000. The subunits can be obtained by a dissociation treatment with 0.1% mercaptoethanol in 0.25% sodium dodecyl sulfate at 95 C for 5 min. The subunits will readily reaggregate into a variety of larger molecular weight forms on the removal of dodecyl sulfate.

Full text

PDF
48

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., HUMPHREY J. H. A theoretical and experimental analysis of double diffusion precipitin reactions in gels, and its application to characterization of antigens. Immunology. 1960 Jan;3:95–106. [PMC free article] [PubMed] [Google Scholar]
  2. ALLISON A. C., HUMPHREY J. H. Estimation of the size of antigens by gel diffusion methods. Nature. 1959 Jun 6;183(4675):1590–1592. doi: 10.1038/1831590a0. [DOI] [PubMed] [Google Scholar]
  3. AMIES C. R. The envelope substance of Pasteurella pestis. Br J Exp Pathol. 1951 Jun;32(3):259–273. [PMC free article] [PubMed] [Google Scholar]
  4. Akedo H., Mori Y., Kobayashi M., Okada M. Changes of isoelectric points of concanavalin A induced by the binding of carbohydrates. Biochem Biophys Res Commun. 1972 Oct 6;49(1):107–113. doi: 10.1016/0006-291x(72)90015-0. [DOI] [PubMed] [Google Scholar]
  5. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BAKER E. E., SOMMER H., FOSTER L. E., MEYER E., MEYER K. F. Studies on immunization against plague. I. The isolation and characterization of the soluble antigen of Pasteurella pestis. J Immunol. 1952 Feb;68(2):131–145. [PubMed] [Google Scholar]
  7. Brubaker R. R. The genus Yersinia: biochemistry and genetics of virulence. Curr Top Microbiol Immunol. 1972;57:111–158. doi: 10.1007/978-3-642-65297-4_4. [DOI] [PubMed] [Google Scholar]
  8. CHEN T. H., MEYER K. F. Studies on immunization against plague. VII. A hemagglutination test with the protein fraction of Pasteurella pestis: a serologic comparison of virulent and avirulent strains with observations on the structure of the bacterial cells and its relationship to infection and immunity. J Immunol. 1954 Apr;72(4):282–298. [PubMed] [Google Scholar]
  9. CHEN T. H., MEYER K. F. Studies on immunization against plague. X. Specific precipitation of Pasteurella pestis antigens and antibodies in gels. J Immunol. 1955 Jun;74(6):501–507. [PubMed] [Google Scholar]
  10. CHEN T. H. THE ANTIGENIC STRUCTURE OF PASTEURELLA PESTIS AND ITS RELATIONSHIP TO VIRULENCE AND IMMUNITY. Acta Trop. 1965;22:97–117. [PubMed] [Google Scholar]
  11. CROWLE A. J. A simplified micro double-diffusion agar precipitin technique. J Lab Clin Med. 1958 Nov;52(5):784–787. [PubMed] [Google Scholar]
  12. CRUMPTON M. J., DAVIES D. A. An antigenic analysis of Pasteurella pestis by diffusion of antigens and antibodies in agar. Proc R Soc Lond B Biol Sci. 1956 Mar 27;144(918):109–134. doi: 10.1098/rspb.1956.0021. [DOI] [PubMed] [Google Scholar]
  13. Chen T. H., Meyer K. F. An evaluation of Pasteurella pestis fraction-1-specific antibody for the confirmation of plague infections. Bull World Health Organ. 1966;34(6):911–918. [PMC free article] [PubMed] [Google Scholar]
  14. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  15. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HERSH R. T., SCHACHMAN H. K. On the size of the protein subunits in bushy stunt virus. Virology. 1958 Aug;6(1):234–243. doi: 10.1016/0042-6822(58)90072-2. [DOI] [PubMed] [Google Scholar]
  17. Habig W., Hudson B. W., Marshall J. D., Cavanaugh D. C., Rust J. H. Evidence for Molecular Heterogeneity of the Specific Antigen (Fraction-1) of Pasteurella pestis. Infect Immun. 1971 Mar;3(3):498–499. doi: 10.1128/iai.3.3.498-499.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kochetkov N. K., Chizhov O. S. Mass spectrometry of carbohydrate derivatives. Adv Carbohydr Chem Biochem. 1966;21:39–93. doi: 10.1016/s0096-5332(08)60315-x. [DOI] [PubMed] [Google Scholar]
  19. Lamm O., Polson A. The determination of diffusion constants of proteins by a refractometric method. Biochem J. 1936 Mar;30(3):528–541. doi: 10.1042/bj0300528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Markey S. P., Tornabene T. G. Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava. Lipids. 1971 Mar;6(3):190–195. doi: 10.1007/BF02533037. [DOI] [PubMed] [Google Scholar]
  21. Niedermeier W. Gas chromatography of neutral and amino sugars in glycoproteins. Anal Biochem. 1971 Apr;40(2):465–475. doi: 10.1016/0003-2697(71)90407-6. [DOI] [PubMed] [Google Scholar]
  22. Pitt-Rivers R., Impiombato F. S. The binding of sodium dodecyl sulphate to various proteins. Biochem J. 1968 Oct;109(5):825–830. doi: 10.1042/bj1090825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reynolds J. A., Tanford C. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):1002–1007. doi: 10.1073/pnas.66.3.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reynolds J. A., Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970 Oct 10;245(19):5161–5165. [PubMed] [Google Scholar]
  25. Righetti P., Drysdale J. W. Isoelectric focusing in polyacrylamide gels. Biochim Biophys Acta. 1971 Apr 27;236(1):17–28. doi: 10.1016/0005-2795(71)90144-9. [DOI] [PubMed] [Google Scholar]
  26. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  27. Spencer R. L., Wold F. A new convenient method for estimation of total cystine-cysteine in proteins. Anal Biochem. 1969 Oct 15;32(1):185–190. doi: 10.1016/0003-2697(69)90123-7. [DOI] [PubMed] [Google Scholar]
  28. Vesterberg O. Isoelectric focusing of proteins in polyacrylamide gels. Biochim Biophys Acta. 1972 Jan 26;257(1):11–19. doi: 10.1016/0005-2795(72)90248-6. [DOI] [PubMed] [Google Scholar]
  29. WADSWORTH C. A slide microtechnique for the analysis of immune precipitates in gel. Int Arch Allergy Appl Immunol. 1957;10(6):355–360. doi: 10.1159/000228394. [DOI] [PubMed] [Google Scholar]
  30. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  31. Wrigley C. W. Analytical fractionation of plant and animal proteins by gel electrofocusing. J Chromatogr. 1968 Aug 27;36(3):362–365. doi: 10.1016/s0021-9673(01)92959-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES