Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Jan;117(1):222–226. doi: 10.1128/jb.117.1.222-226.1974

Surface-Bound Nuclease of Staphylococcus aureus: Purification and Properties of the Enzyme

Kinji Okabayashi 1, Den'ichi Mizuno 1
PMCID: PMC246547  PMID: 4808903

Abstract

The surface-bound nuclease of Staphylococcus aureus liberated during formation of protoplasts was purified 1,000-fold by chromatography on phosphocellulose. Its properties were compared with those of the known extracellular nuclease, purified 200-fold by the same procedures. The adsorbance of the surface-bound nuclease on phosphocellulose was distinctly different from that of the extracellular nuclease, but other properties of the two enzymes were similar. Both enzymes had a pH optimum of about 10 and required Ca2+ for activity. Both enzymes hydrolyzed deoxyribonucleic acid (DNA) and ribonucleic acid, and denatured DNA was a better substrate than native DNA. Both enzymes were inhibited by the same metal ions. Nuclease-less mutants of S. aureus were isolated from S. aureus 209P by using N-methyl-N′-nitroso-N-nitrosoguanidine. These mutants contained neither surface-bound nor extracellular nuclease activity. These results suggest that the surface-bound and extracellular nucleases are expressed from the same cistron of S. aureus.

Full text

PDF
222

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anraku Y., Mizuno D. Comparative study on the ribonucleases isolated from the debris and ribosome fraction of Escherichia coli. J Biochem. 1967 Jan;61(1):70–80. doi: 10.1093/oxfordjournals.jbchem.a128522. [DOI] [PubMed] [Google Scholar]
  2. Coles N. W., Gross R. Liberation of surface-located penicillinase from Staphylococcus aureus. Biochem J. 1967 Mar;102(3):742–747. doi: 10.1042/bj1020742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Fuchs S., Anfinsen C. B. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1967 Apr 10;242(7):1541–1547. [PubMed] [Google Scholar]
  4. Fuchs S., Cuatrecasas P., Anfinsen C. B. An improved method for the purification of staphylococcal nuclease. J Biol Chem. 1967 Oct 25;242(20):4768–4770. [PubMed] [Google Scholar]
  5. Futai M., Okabayashi K., Mizuno D. Electron microscopic studies on the outer layers of Staphylococcus aureus using a lytic enzyme from Falvobacterium. Jpn J Microbiol. 1972 Sep;16(5):341–350. doi: 10.1111/j.1348-0421.1972.tb00669.x. [DOI] [PubMed] [Google Scholar]
  6. Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
  7. KUSHNER D. J., POLLOCK M. R. The location of cell-bound penicillinase in Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:255–265. doi: 10.1099/00221287-26-2-255. [DOI] [PubMed] [Google Scholar]
  8. Kuwabara S., Adams E. P., Abraham E. P. The composition of beta-lactamase I and beta-lactamase II from Bacillus cereus 569-H. Biochem J. 1970 Jul;118(3):475–480. doi: 10.1042/bj1180475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lampen J. O. Cell-bound penicillinase of Bacillus licheniformis; properties and purification. J Gen Microbiol. 1967 Aug;48(2):249–259. doi: 10.1099/00221287-48-2-249. [DOI] [PubMed] [Google Scholar]
  11. Morávek L., Anfinsen C. B., Cone J. L., Taniuchi H. The large scale preparation of an extracellular nuclease of Staphylococcus aureus. J Biol Chem. 1969 Jan 25;244(2):497–499. [PubMed] [Google Scholar]
  12. POLLOCK M. R. The measurement of the liberation of penicillinase from Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:239–253. doi: 10.1099/00221287-26-2-239. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES