Abstract
Transfer ribonucleic acid (tRNA) from exponentially growing cells (trophozoites) and from precysts of Acanthamoeba castellanii were examined by reversed-phase column (RPC-2) chromatography. This system gave excellent resolution of isoaccepting species of tRNA. The tRNAs for 12 amino acids were studied. A comparison of trophozoite and precyst tRNA elution profiles revealed no apparent differences in the number of isoaccepting species of alanyl-, arginyl-, asparaginyl-, glycyl-, leucyl-, lysyl-, methionyl-, phenylalanyl-, tryptophanyl-, or valyl-tRNAs. Seryl-tRNAs from trophozoites were eluted as three components, whereas precyst seryl-tRNAs were eluted as only two components. Precharged trophozoite and precyst isoleucyl-tRNAs were both eluted as single components; however, post-chromatography charging of trophozoite tRNA resulted in three components of activity for tRNAIle and only one component for precyst tRNAIle. None of the observed changes could be attributed to differences in synthetases or to the presence of altered tRNA lacking the CCA terminus or partially degraded by nucleases. The possible significance of these observations is discussed.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson W. F. The effect of tRNA concentration on the rate of protein synthesis. Proc Natl Acad Sci U S A. 1969 Feb;62(2):566–573. doi: 10.1073/pnas.62.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baliga B. S., Borek E., Weinstein I. B., Srinivasan P. R. Differences in the transfer RNA's of normal liver and Novikoff hepatoma. Proc Natl Acad Sci U S A. 1969 Mar;62(3):899–905. doi: 10.1073/pnas.62.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol. 1969 Jun;41(3):786–805. doi: 10.1083/jcb.41.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J Cell Biol. 1968 Oct;39(1):95–111. doi: 10.1083/jcb.39.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers T. J., Rudick V. L., Rudick M. J. Cell size, macromolecule composition, nuclear number, oxygen consumption and cyst formation during two growth phases in unagitated cultures of Acanthamoeba castellanii. J Protozool. 1969 Nov;16(4):693–699. doi: 10.1111/j.1550-7408.1969.tb02329.x. [DOI] [PubMed] [Google Scholar]
- JENSEN T., DUBES G. R. Cloning, titration, and differentiation of Acanthamoeba sp. by plating. J Parasitol. 1962 Apr;48:280–286. [PubMed] [Google Scholar]
- Jensen T., Barnes W. G., Meyers D. Axenic cultivation of large populations of Acanthamoeba castellanii (JBM). J Parasitol. 1970 Oct;56(5):904–906. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTINEZSEGOVIA Z. M., SOKOL F., GRAVES I. L., ACKERMANN W. W. SOME PROPERTIES OF NUCLEIC ACIDS EXTRACTED WITH PHENOL. Biochim Biophys Acta. 1965 Feb 8;95:329–340. doi: 10.1016/0005-2787(65)90497-1. [DOI] [PubMed] [Google Scholar]
- Nazario M. Different arginine transfer ribonucleic acid species prevalent in shaken and unshaken cultures of Neurospora. J Bacteriol. 1972 Dec;112(3):1076–1082. doi: 10.1128/jb.112.3.1076-1082.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neff R. J., Neff R. H. The biochemistry of amoebic encystment. Symp Soc Exp Biol. 1969;23:51–81. [PubMed] [Google Scholar]
- Pasternak J. J., Thompson J. E., Schultz T. M., Zachariah K. A scanning electron microscopic study of the encystment of Acanthamoeba castellanii. Exp Cell Res. 1970 May;60(2):290–298. doi: 10.1016/0014-4827(70)90517-3. [DOI] [PubMed] [Google Scholar]
- Rudick V. L., Weisman R. A. DNA-dependent RNA polymerase from trophozoites and cysts of Acanthamoeba castellanii. Biochim Biophys Acta. 1973 Feb 23;299(1):91–102. doi: 10.1016/0005-2787(73)90400-0. [DOI] [PubMed] [Google Scholar]
- SUEOKA N., KANO-SUEOKA T. A SPECIFIC MODIFICATION OF LEUCYL-SRNA OF ESCHERICHIA COLI AFTER PHAGE T2 INFECTION. Proc Natl Acad Sci U S A. 1964 Dec;52:1535–1540. doi: 10.1073/pnas.52.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens A. R., Pachler P. F. RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellanii. J Cell Biol. 1973 May;57(2):525–537. doi: 10.1083/jcb.57.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sueoka N., Kano-Sueoka T., Gartland W. J. Modification of sRNA and regulation of protein synthesis. Cold Spring Harb Symp Quant Biol. 1966;31:571–580. doi: 10.1101/sqb.1966.031.01.074. [DOI] [PubMed] [Google Scholar]
- Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]
- Taylor M. W., Buck C. A., Granger G. A., Holland J. J. Chromatographic alterations in transfer RNA's accompanying speciation, differentiation and tumor formation. J Mol Biol. 1968 May 14;33(3):809–828. doi: 10.1016/0022-2836(68)90321-5. [DOI] [PubMed] [Google Scholar]
- Volkers S. A., Taylor M. W. Chromatographic comparison of the transfer ribonucleic acids of rat livers and Morris hepatomas. Biochemistry. 1971 Feb 2;10(3):488–497. doi: 10.1021/bi00779a022. [DOI] [PubMed] [Google Scholar]
- Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
- Yang W. K., Novelli G. D. Isoaccepting +RNA's in mouse plasma cell tumors that synthesize different myeloma protein. Biochem Biophys Res Commun. 1968 May 23;31(4):534–539. doi: 10.1016/0006-291x(68)90510-x. [DOI] [PubMed] [Google Scholar]
