Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Jan;117(1):252–260. doi: 10.1128/jb.117.1.252-260.1974

Mutants of Saccharomyces cerevisiae That Incorporate Deoxythymidine-5′-Monophosphate Into Deoxyribonucleic Acid In Vivo

Reed B Wickner a,1
PMCID: PMC246551  PMID: 4587606

Abstract

Spontaneous mutants of Saccharomyces cerevisiae able to incorporate deoxythymidine-5′-monophosphate (dTMP) into deoxyribonucleic acid (DNA) have been selected based on their ability to grow in the presence of aminopterin and sulfanilamide if dTMP is present. Essentially all mutants (called tup) selected in this way required dTMP for growth in the presence of the two drugs, but none required dTMP in the absence of the drugs. Neither thymine nor thymidine would satisfy this requirement. Equimolar amounts of 32P- and 3H-base-labeled dTMP were incorporated by the mutants into alkali-stable, deoxyribonuclease-sensitive material. In the presence of aminopterin and sulfanilamide, this incorporation was sufficient to account for a substantial proportion of the thymine residues in the cellular DNA, whereas in the absence of the drugs only about 40% as much of the thymine residues originated from the medium. Of 29 mutants examined, all were recessive and 17 showed 2:2 segregation in crosses with a wild-type strain. The lesions in these mutants fell into four complementation groups: one (tup1) occurs on chromosome III; another (tup3) is on chromosome II; and a third (tup4) was centromere linked. Strains of the genotype α tup1 mated with lower than normal efficiency with a strains, but with higher than normal efficiency with α strains. Strains of genotype a/α tup1/tup1 failed to sporulate, whereas homozygous diploids for tup2, tup3, or tup4 sporulated normally, as did a/α tup1/+ strains.

Full text

PDF
252

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brendel M., Haynes R. H. Kinetics and genetic control of the incorporation of thymidine monophosphate in yeast DNA. Mol Gen Genet. 1972;117(1):39–44. doi: 10.1007/BF00268835. [DOI] [PubMed] [Google Scholar]
  2. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  3. Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
  4. Hartwell L. H., Culotti J., Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A. 1970 Jun;66(2):352–359. doi: 10.1073/pnas.66.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOHNSTON J. R., MORTIMER R. K. Use of snail digestive juice in isolation of yeast spore tetrads. J Bacteriol. 1959 Aug;78:292–292. doi: 10.1128/jb.78.2.292-292.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jannsen S., Lochmann E. -R., Megnet R. Specific incorporation of exogenous thymidine monophosphate into DNA in Saccharomyces cerevisiae. FEBS Lett. 1970 Jun 1;8(3):113–115. doi: 10.1016/0014-5793(70)80239-3. [DOI] [PubMed] [Google Scholar]
  7. Jannsen S., Lochmann E. R., Laskowski W. DNS-Synthess nach Röntgenbestrahlung bei homozygoten Hefestämmen verschiedenen Ploidiegrades. Z Naturforsch B. 1968 Nov;23(11):1500–1507. [PubMed] [Google Scholar]
  8. Jannsen S., Witte I., Megnet R. Mutants for the specific labelling of DNA in Saccharomyces cerevisiae. Biochim Biophys Acta. 1973 Apr 11;299(4):681–685. doi: 10.1016/0005-2787(73)90243-8. [DOI] [PubMed] [Google Scholar]
  9. LEHMAN I. R., BESSMAN M. J., SIMMS E. S., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem. 1958 Jul;233(1):163–170. [PubMed] [Google Scholar]
  10. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NICKERSON W. J., WEBB M. Effect of folic acid analogues on growth and cell division of nonexacting microorganisms. J Bacteriol. 1956 Feb;71(2):129–139. doi: 10.1128/jb.71.2.129-139.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OGUR M., MINCKLER S., LINDEGREN G., LINDEGREN C. C. The nucleic acids in a polyploid series of Saccharomyces. Arch Biochem Biophys. 1952 Sep;40(1):175–184. doi: 10.1016/0003-9861(52)90085-4. [DOI] [PubMed] [Google Scholar]
  13. OKADA T., YANAGISAWA K., RYAN F. J. A method for securing thymineless mutants from strains of E. coli. Z Vererbungsl. 1961;92:403–412. doi: 10.1007/BF00890061. [DOI] [PubMed] [Google Scholar]
  14. Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. STACEY K. A., SIMSON E. IMPROVED METHOD FOR THE ISOLATION OF THYMINE-REQUIRING MUTANTS OF ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:554–555. doi: 10.1128/jb.90.2.554-555.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  17. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. II. Physical characterization and replication. J Mol Biol. 1967 Nov 28;30(1):165–200. doi: 10.1016/0022-2836(67)90251-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES