Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Mar;117(3):987–993. doi: 10.1128/jb.117.3.987-993.1974

Decay of Ribonucleic Acid Synthesis in Amino Acid-Starved Escherichia coli After Rifampin Treatment

Allen C Rogerson a,1, David H Ezekiel a
PMCID: PMC246576  PMID: 4591964

Abstract

The concentration of rifampin necessary to affect the initiation of ribonucleic acid (RNA) synthesis quickly in Escherichia coli strains K-12 and 15TAU was about 200 μg/ml, as determined by extrapolation of the effect of the drug on the induction of β-galactosidase synthesis. A lag in the action of rifampin of about 10 s was confirmed. Rifampin was then used as a probe to compare RNA synthesis in growing and amino acid-starved E. coli. Restoring arginine to arginine-starved strain 15TAU immediately after rifampin inhibition did not detectably restore the rate of uracil uptake to that of uninhibited cells. The residual rate of RNA synthesis (corrected for acid-soluble triphosphate specific activities) after rifampin treatment of both growing and isoleucine-starved (valine-inhibited) cultures of strain K-12 showed similar decay kinetics. These findings support the notion that amino acid starvation blocks the initiation of some RNA transcription units, but do not rule out other possibilities.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edlin G., Stent G. S., Baker R. F., Yanofsky C. Synthesis of a specific messenger RNA during amino acid starvation of Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):257–268. doi: 10.1016/0022-2836(68)90266-0. [DOI] [PubMed] [Google Scholar]
  5. Erlich H., Laffler T., Gallant J. ppGpp formation in Escherichia coli treated with rifampicin. J Biol Chem. 1971 Oct 10;246(19):6121–6123. [PubMed] [Google Scholar]
  6. Freundlich M. Valyl-Transfer RNA: Role in Repression of the Isoleucine-Valine Enzymes in Escherichia coli. Science. 1967 Aug 18;157(3790):823–825. doi: 10.1126/science.157.3790.823-a. [DOI] [PubMed] [Google Scholar]
  7. Gallant J., Margason G. Amino acid control of messenger ribonucleic acid synthesis in Bacillus subtilis. J Biol Chem. 1972 Apr 25;247(8):2289–2294. [PubMed] [Google Scholar]
  8. Jacquet M., Kepes A. The step sensitive to catabolite repression and its reversal by 3'-5' cyclic AMP during induced synthesis of beta-galactosidase in E. coli. Biochem Biophys Res Commun. 1969 Jul 7;36(1):84–92. doi: 10.1016/0006-291x(69)90653-6. [DOI] [PubMed] [Google Scholar]
  9. KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
  10. Kossman C. R., Stamato T. D., Pettijohn D. E. Tandem synthesis of the 16S and 23S ribosomal RNA sequences of Escherichia coli. Nat New Biol. 1971 Nov 24;234(47):102–104. doi: 10.1038/newbio234102a0. [DOI] [PubMed] [Google Scholar]
  11. Lavallé R., De Hauwer G. Messenger RNA synthesis during amino acid starvation in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):269–288. doi: 10.1016/0022-2836(68)90267-2. [DOI] [PubMed] [Google Scholar]
  12. Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
  13. Lazzarini R. A., Nakata K., Winslow R. M. Coordinate control of ribonucleic acid synthesis during uracil deprivation. J Biol Chem. 1969 Jun 10;244(11):3092–3100. [PubMed] [Google Scholar]
  14. Morris D. W., Kjeldgaard N. O. Evidence for the non-co-ordinate regulation of ribonucleic acid synthesis in stringent strains of Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):145–148. doi: 10.1016/0022-2836(68)90064-8. [DOI] [PubMed] [Google Scholar]
  15. Mosteller R. D., Yanofsky C. Transcription of the tryptophan operon in Escherichia coli: rifampicin as an inhibitor of initiation. J Mol Biol. 1970 Mar;48(3):525–531. doi: 10.1016/0022-2836(70)90064-1. [DOI] [PubMed] [Google Scholar]
  16. Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reid P., Speyer J. Rifampicin inhibition of ribonucleic acid and protein synthesis in normal and ethylenediaminetetraacetic acid-treated Escherichia coli. J Bacteriol. 1970 Oct;104(1):376–389. doi: 10.1128/jb.104.1.376-389.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ryan A. M., Borek E. The relaxed control phenomenon. Prog Nucleic Acid Res Mol Biol. 1971;11:193–228. doi: 10.1016/s0079-6603(08)60328-1. [DOI] [PubMed] [Google Scholar]
  19. Salser W., Janin J., Levinthal C. Measurement of the unstable RNA in exponentially growing cultures of Bacillus subtilis and Escherichia coli. J Mol Biol. 1968 Jan 28;31(2):237–266. doi: 10.1016/0022-2836(68)90442-7. [DOI] [PubMed] [Google Scholar]
  20. Sarkar S., Moldave K. Characterization of the ribonucleic acid synthesized during amino acid-deprivation of a stringent auxotroph of Escherichia coli. J Mol Biol. 1968 Apr 14;33(1):213–224. doi: 10.1016/0022-2836(68)90289-1. [DOI] [PubMed] [Google Scholar]
  21. Stamato T. D., Pettijohn D. E. Regulation of ribosomal RNA synthesis in stringent bacteria. Nat New Biol. 1971 Nov 24;234(47):99–102. doi: 10.1038/newbio234099a0. [DOI] [PubMed] [Google Scholar]
  22. Winslow R. M., Lazzarini R. A. Amino acid regulation of the rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3387–3392. [PubMed] [Google Scholar]
  23. Winslow R. M., Lazzarini R. A. The rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Mar 10;244(5):1128–1136. [PubMed] [Google Scholar]
  24. di Mauro E., Synder L., Marino P., Lamberti A., Coppo A., Tocchini-Valentini G. P. Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature. 1969 May 10;222(5193):533–537. doi: 10.1038/222533a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES