Abstract
Wild-type, band, and fluffy strains of Neurospora crassa exhibit circadian rhythms of ribonucleic acid and deoxyribonucleic acid content in the growth-front hyphae of cultures grown on a solid medium. There is also a rhythm of 3H-uridine incorporation into the nucleic acids of the band strain. Maximum incorporation precedes the peaks of nucleic acid content which occur during conidiation. As cultures age, ribonucleic acid content decreases rapidly and deoxyribonucleic acid content decreases gradually in standing, shake, and bubble cultures. A reduction of ribonuclease activity with age is also noted in standing and shake cultures. The nucleic acid content, nuclease activity, and changes associated with age vary with the culture conditions.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody S., Harris S. Circadian rhythms in neurospora: spatial differences in pyridine nucleotide levels. Science. 1973 May 4;180(4085):498–500. doi: 10.1126/science.180.4085.498. [DOI] [PubMed] [Google Scholar]
- Burns E. R., Scheving L. E., Tsai T. H. Circadian rhythm in uptake of tritiated thymidine by kidney, parotid, and duodenum of isoproterenol-treated mice. Science. 1972 Jan 7;175(4017):71–73. doi: 10.1126/science.175.4017.71. [DOI] [PubMed] [Google Scholar]
- Driessche T. V., Bonotto S. The circadian rhythm in RNA synthesis in Acetabularia mediterranea. Biochim Biophys Acta. 1969 Mar 18;179(1):58–66. doi: 10.1016/0005-2787(69)90122-1. [DOI] [PubMed] [Google Scholar]
- Ehret C. F., Trucco E. Molecular models for the circadian clock. I. The chronon concept. J Theor Biol. 1967 May;15(2):240–262. doi: 10.1016/0022-5193(67)90206-8. [DOI] [PubMed] [Google Scholar]
- HALBERG F. Temporal coordination of physiologic function. Cold Spring Harb Symp Quant Biol. 1960;25:289–310. doi: 10.1101/sqb.1960.025.01.031. [DOI] [PubMed] [Google Scholar]
- HASTINGS J. W. Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harb Symp Quant Biol. 1960;25:131–143. doi: 10.1101/sqb.1960.025.01.012. [DOI] [PubMed] [Google Scholar]
- Lyons M. M., Squibb R. L., Siegal H. Nucleotide rhythms in the mature rat heart. Nature. 1967 Dec 16;216(5120):1113–1114. doi: 10.1038/2161113a0. [DOI] [PubMed] [Google Scholar]
- Munro H. N. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113–176. doi: 10.1002/9780470110324.ch5. [DOI] [PubMed] [Google Scholar]
- Ruby J. R., Scheving L. E., Gray S. B., White K. Circadian rhythm of nuclear DNA in adult rat liver. Exp Cell Res. 1973 Jan;76(1):136–142. doi: 10.1016/0014-4827(73)90428-x. [DOI] [PubMed] [Google Scholar]
- SCHULMAN H. M., BONNER D. M. A naturally occurring DNA-RNA complex from Neurospora crassa. Proc Natl Acad Sci U S A. 1962 Jan 15;48:53–63. doi: 10.1073/pnas.48.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent M. L., Kaltenborn S. H. Effects of medium composition and carbon dioxide on circadian conidiation in neurospora. Plant Physiol. 1972 Jul;50(1):171–175. doi: 10.1104/pp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent M. L., Woodward D. O. Genetic determinants of circadian rhythmicity in Neurospora. J Bacteriol. 1969 Feb;97(2):861–866. doi: 10.1128/jb.97.2.861-866.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhart W. L. Diurnal rhythmicity in template activity of mouse liver chromatin. Biochim Biophys Acta. 1971 Jan 1;228(1):301–305. doi: 10.1016/0005-2787(71)90571-5. [DOI] [PubMed] [Google Scholar]