Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Mar;117(3):1358–1360. doi: 10.1128/jb.117.3.1358-1360.1974

Degradation of Thymidine by Lactobacillus acidophilus

R V Sawula 1, S Zamenhof 2, P J Zamenhof 3
PMCID: PMC246623  PMID: 4205200

Abstract

Whole cells of Lactobacillus acidophilus are capable of degrading thymidine to thymine, suggesting the presence of thymidine phosphorylase (or thymidine hydrolase). This activity was also demonstrated in cell-free extracts.

Full text

PDF
1358

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HOFF-JØRGENSEN E. A microbiological assay of deoxyribonucleosides and deoxyribonucleic acid. Biochem J. 1952 Jan;50(3):400–403. doi: 10.1042/bj0500400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Imada A., Igarasi S. Ribosyl and deoxyribosyl transfer by bacterial enzyme systems. J Bacteriol. 1967 Nov;94(5):1551–1559. doi: 10.1128/jb.94.5.1551-1559.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KALCKAR H. M., MACNUTT W. S., HOFF-JØRGENSEN E. Trans-N-glycosidase studied with radioactive adenine. Biochem J. 1952 Jan;50(3):397–400. doi: 10.1042/bj0500397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. LAMPEN J. O., WANG T. P. The mechanism of action of Lactobacillus pentosus nucleosidase. J Biol Chem. 1952 Sep;198(1):385–395. [PubMed] [Google Scholar]
  5. MACNUTT W. S. The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem J. 1952 Jan;50(3):384–397. doi: 10.1042/bj0500384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MARSH J. C., KING M. E. Purification of trans-N-glycosidase of Thermobacter acidophilus: inhibition of enzyme by 6-azathymidine. Biochem Pharmacol. 1959 Aug;2:146–153. doi: 10.1016/0006-2952(59)90081-4. [DOI] [PubMed] [Google Scholar]
  7. Munch-Petersen A. Deoxyribonucleoside catabolism and thymine incorporation in mutants of Escherichia coli lacking deoxyriboaldolase. Eur J Biochem. 1970 Jul;15(1):191–202. doi: 10.1111/j.1432-1033.1970.tb00994.x. [DOI] [PubMed] [Google Scholar]
  8. Munch-Petersen A. Thymidine breakdown and thymine uptake in different mutants of Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):228–237. doi: 10.1016/0005-2787(67)90530-8. [DOI] [PubMed] [Google Scholar]
  9. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Powell J. W., Wachsman J. T. Evidence for four deoxynucleoside kinase activities in extracts of Lactobacillus leichmannii. Appl Microbiol. 1973 Jun;25(6):869–872. doi: 10.1128/am.25.6.869-872.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROUSH A. H., BETZ R. F. Purification and properties of trans-N-deoxyribosylase. J Biol Chem. 1958 Aug;233(2):261–266. [PubMed] [Google Scholar]
  12. Rosenbaum-Oliver D., Zamenhof S. Degree of participation of exogenous thymidine in the overall deoxyribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):585–591. doi: 10.1128/jb.110.2.585-591.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WANG T. P., LAMPEN J. O. The cleavage of adenosine, cytidine, and xanthosine by Lactobacillus pentosus. J Biol Chem. 1951 Sep;192(1):339–347. [PubMed] [Google Scholar]
  14. Yagil E., Rosner A. Effect of adenosine and deoxyadenosine on the incorporation and breakdown of thymidine in Escherichia coli K-12. J Bacteriol. 1970 Aug;103(2):417–421. doi: 10.1128/jb.103.2.417-421.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES