Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Apr;118(1):53–58. doi: 10.1128/jb.118.1.53-58.1974

Studies on l-Serine Deaminase in Escherichia coli K-12

S Isenberg 1, E B Newman 1
PMCID: PMC246639  PMID: 4595204

Abstract

l-Serine deaminase has been studied in toluene-treated cells of Escherichia coli K-12 and shown to be a discrete entity distinct from l-threonine deaminase. Its level in the cell varies as a function of nitrogen nutrition, carbon source, and amino acids (glycine and leucine). The metabolic role of the enzyme remains unclear but may be related to serine toxicity. The enzyme is unstable within the cell in the presence of its inducers, glycine and leucine, but not in their absence.

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARTMAN M., MARKENSON J. Studies on serine and threonine deaminases of Escherichia coli and the action of dihydrostreptomycin thereupon. Enzymologia. 1958 Jan 31;19(1):9–15. [PubMed] [Google Scholar]
  2. Alföldi L., Raskó I., I L-serine deaminating enzymes in Escherichia coli crude extracts. FEBS Lett. 1970 Jan 26;6(2):73–76. doi: 10.1016/0014-5793(70)80004-7. [DOI] [PubMed] [Google Scholar]
  3. Alföldi L., Raskó I., Kerekes E. L-serine deaminase of Escherichia coli. J Bacteriol. 1968 Nov;96(5):1512–1518. doi: 10.1128/jb.96.5.1512-1518.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BENZIMAN M., SAGERS R. D., GUNSALUS I. C. L-serine specific dehydrase from Clostridium acidi-urici. J Bacteriol. 1960 Apr;79:474–479. doi: 10.1128/jb.79.4.474-479.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cosloy S. D., McFall E. L-Serine-sensitive mutants of Escherichia coli K-12. J Bacteriol. 1970 Sep;103(3):840–841. doi: 10.1128/jb.103.3.840-841.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GRISOLIA S. THE CATALYTIC ENVIRONMENT AND ITS BIOLOGICAL IMPLICATIONS. Physiol Rev. 1964 Oct;44:657–712. doi: 10.1152/physrev.1964.44.4.657. [DOI] [PubMed] [Google Scholar]
  8. Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971 Mar;121(5):753–762. doi: 10.1042/bj1210753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holzer H., Duntze W. Metabolic regulation by chemical modification of enzymes. Annu Rev Biochem. 1971;40:345–374. doi: 10.1146/annurev.bi.40.070171.002021. [DOI] [PubMed] [Google Scholar]
  10. Holzer H. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv Enzymol Relat Areas Mol Biol. 1969;32:297–326. doi: 10.1002/9780470122778.ch7. [DOI] [PubMed] [Google Scholar]
  11. Jacobson M. F., Baltimore D. Polypeptide cleavages in the formation of poliovirus proteins. Proc Natl Acad Sci U S A. 1968 Sep;61(1):77–84. doi: 10.1073/pnas.61.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KLEIN S. M., SAGERS R. D. Intermediary metabolism of Diplococcus glycinophilus. II. Enzymes of the acetategenerating system. J Bacteriol. 1962 Jan;83:121–126. doi: 10.1128/jb.83.1.121-126.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MCFALL E. GENETIC STRUCTURE OF THE D-SERINE DEAMINASE SYSTEM OF ESCHERICHIA COLI. J Mol Biol. 1964 Sep;9:746–753. doi: 10.1016/s0022-2836(64)80179-0. [DOI] [PubMed] [Google Scholar]
  15. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  16. NEWMAN E. B., MAGASANIK B. THE RELATION OF SERINE--GLYCINE METABOLISM TO THE FORMATION OF SINGLE-CARBON UNITS. Biochim Biophys Acta. 1963 Nov 15;78:437–448. doi: 10.1016/0006-3002(63)90905-3. [DOI] [PubMed] [Google Scholar]
  17. PARDEE A. B., PRESTIDGE L. S. Induced formation of serine and threonine deaminases by Escherichia coli. J Bacteriol. 1955 Dec;70(6):667–674. doi: 10.1128/jb.70.6.667-674.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pine M. J. Turnover of intracellular proteins. Annu Rev Microbiol. 1972;26:103–126. doi: 10.1146/annurev.mi.26.100172.000535. [DOI] [PubMed] [Google Scholar]
  19. UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. I. D- and L-threonine deaminase activities of cell-free extracts. J Bacteriol. 1956 Apr;71(4):443–449. doi: 10.1128/jb.71.4.443-449.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Umbarger H. E. Threonine deaminases. Adv Enzymol Relat Areas Mol Biol. 1973;37:349–395. doi: 10.1002/9780470122822.ch6. [DOI] [PubMed] [Google Scholar]
  21. WOOD W. A., GUNSALUS I. C. Serine and threonine desaminaes of Escherichia coli; activators for a cell-free enzyme. J Biol Chem. 1949 Nov;181(1):171–182. [PubMed] [Google Scholar]
  22. Wang D., Waygood E. R. Carbon metabolism of C-labeled amino acids in wheat leaves. I. A pathway of glyoxylate-serine metabolism. Plant Physiol. 1962 Nov;37(6):826–832. doi: 10.1104/pp.37.6.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams L. S., Neidhardt F. C. Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. J Mol Biol. 1969 Aug 14;43(3):529–550. doi: 10.1016/0022-2836(69)90357-x. [DOI] [PubMed] [Google Scholar]
  24. YANKEELOV J. A., Jr, KOSHLAND D. E., Jr EVIDENCE FOR CONFORMATION CHANGES INDUCED BY SUBSTRATES OF PHOSPHOGLUCOMUTASE. J Biol Chem. 1965 Apr;240:1593–1602. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES