Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Apr;118(1):59–69. doi: 10.1128/jb.118.1.59-69.1974

Microtubule Assembly and Function in Chlamydomonas: Inhibition of Growth and Flagellar Regeneration by Antitubulins and Other Drugs and Isolation of Resistant Mutants

Martin Flavin 1, Clarence Slaughter 1
PMCID: PMC246640  PMID: 4362464

Abstract

The distribution of microtubules in Chlamydomonas reinhardtii suggests that they are involved in mitosis, cell and nuclear cleavage, and generation of flagella. Vinblastine, colchicine, and podophyllotoxin bind to the protein building block of microtubules (tubulin) and prevent normal assembly. Mutants resistant to these “antitubulin” drugs are candidates to have alterations in tubulin primary structure. We report the ability to inhibit growth, and flagellar regeneration after amputation, of: vinblastine, several colchicine derivatives, two water-soluble derivatives of podophyllotoxin (succinylpodophyllotoxin and epipodophyllotoxin thiuronium bromide), and other substances which may interfere with flagellar assembly or motility (isopropyl N-phenyl carbamate, 2-methoxy-5-nitrotropone, chloral hydrate, caffeine, and nickel acetate). The ability of each drug to inhibit binding of labeled colchicine or podophyllotoxin to mammalian brain tubulin was also determined. The results suggest that only in the cases of colchicine, colcemide, and epipodophyllotoxin thiruonium bromide was the toxicity to Chlamydomonas mediated by inhibition of tubulin assembly. The requirement for high concentrations of colchicine may be due to permeability barriers, since colchicine toxicity was potentiated by deoxycholate. Mutants resistant to antitubulins were isolated after treatment with methyl methanesulfonate. The results with vinblastine were equivocal. Of three mutants resistant to inhibition of growth and flagellar regeneration by colchicine, one was also cross-resistant to epipodophyllotoxin thiuronium bromide.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M., Warr J. R. Colchicine-resistant mutants of Chlamydomonas reinhardi. Exp Cell Res. 1972;71(2):473–475. doi: 10.1016/0014-4827(72)90319-9. [DOI] [PubMed] [Google Scholar]
  2. Blum J. J., Lubliner J. Biophysics of flagellar motility. Annu Rev Biophys Bioeng. 1973;2:181–219. doi: 10.1146/annurev.bb.02.060173.001145. [DOI] [PubMed] [Google Scholar]
  3. Deysson G. Autimitotic substances. Int Rev Cytol. 1968;24:99–148. [PubMed] [Google Scholar]
  4. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HARTWELL J. L., SCHRECKER A. W. The chemistry of Podophyllum. Fortschr Chem Org Naturst. 1958;15:83–166. doi: 10.1007/978-3-7091-7162-2_3. [DOI] [PubMed] [Google Scholar]
  6. Hepler P. K., Jackson W. T. Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J Cell Sci. 1969 Nov;5(3):727–743. doi: 10.1242/jcs.5.3.727. [DOI] [PubMed] [Google Scholar]
  7. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lederberg S., Stetten G. Colcemid sensitivity of fission yeast and the isolation of colcemid-resistant mutants. Science. 1970 Apr 24;168(3930):485–487. doi: 10.1126/science.168.3930.485. [DOI] [PubMed] [Google Scholar]
  9. Lee R. W., Jones R. F. Induction of Mendelian and non-Mendelian streptomycin resistant mutants during the synchronous cell cycle of Chlamydomonas reinhardtii. Mol Gen Genet. 1973 Mar 1;121(2):99–108. doi: 10.1007/BF00277524. [DOI] [PubMed] [Google Scholar]
  10. Loppes R. Effect of the selective medium on the manifestation of mutations induced with mono-alkylating agents in Chlamydomonas reinhardi. Mutat Res. 1969 Jan-Feb;7(1):25–34. doi: 10.1016/0027-5107(69)90046-3. [DOI] [PubMed] [Google Scholar]
  11. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  12. Owellen R. J., Owens A. H., Jr, Donigian D. W. The binding of vincristine, vinblastine and colchicine to tubulin. Biochem Biophys Res Commun. 1972 May 26;47(4):685–691. doi: 10.1016/0006-291x(72)90546-3. [DOI] [PubMed] [Google Scholar]
  13. Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubin R. W., Filner P. Adenosine 3',5'-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration. J Cell Biol. 1973 Mar;56(3):628–635. doi: 10.1083/jcb.56.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]
  16. Watanabe T., Flavin M. Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardi. Biochem Biophys Res Commun. 1973 May 1;52(1):195–201. doi: 10.1016/0006-291x(73)90973-x. [DOI] [PubMed] [Google Scholar]
  17. Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]
  18. Wilson L., Meza I. The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin. J Cell Biol. 1973 Sep;58(3):709–719. doi: 10.1083/jcb.58.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]
  20. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zweig M. H., Chignell C. F. Interaction of some colchicine analogs, vinblastine and podophyllotoxin with rat brain microtubule protein. Biochem Pharmacol. 1973 Sep 1;22(17):2141–2150. doi: 10.1016/0006-2952(73)90113-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES