Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Apr;118(1):129–138. doi: 10.1128/jb.118.1.129-138.1974

Direct Enzymatic Repair of Deoxyribonucleic Acid Single-Strand Breaks in Dormant Spores

E Durban a,1, N Grecz a, J Farkas a,2
PMCID: PMC246648  PMID: 4206867

Abstract

With the alkaline sucrose gradient centrifugation method, it was found that dormant spores of Clostridium botulinum subjected to 300 krads of gamma radiation showed a distinct decrease in deoxyribonucleic acid (DNA) fragment size, indicating induction of single-strand breaks (SSB). A two- to threefold difference in radiation resistance of spores of two strains of C. botulinum, 33A (37% survival dose [D37] = 110 krads) and 51B (D37 = 47 krads), was accompanied by relatively larger DNA fragments (molecular weight 7.9 × 107) obtained during extraction from the radiation-resistant strain 33A and smaller DNA fragments (molecular weight 1.8 × 107) obtained under identical conditions from radiation-sensitive strain 51B. The apparent number of DNA SSB produced by 300 krads in strains 33A and 51B was 0.37 and 3.50, respectively, per 108 daltons of DNA. Addition of 0.02 M ethylenediaminetetraacetic acid (EDTA) to spore suspensions during irradiation doubled the apparent number of SSB in strain 33A but had no effect on strain 51B. In vivo, 0.02 M EDTA present during irradiation to 100 to 300 krads decreased survival of spores of 33A by about 30% but had little or no effect on 51B. Survival of 33A was also reduced by about 45% when the spores were irradiated while frozen in dry ice (−75 C) and, after irradiation, immediately exposed to 0.03 M EDTA for 1 h to inhibit repair in the dormant spores. These results suggest that the highly radiation-resistant strain 33A may be able to accomplish repair of SSB during irradiation or after irradiation under nonphysiological conditions, i.e., in the dormant state. This repair can be inhibited by EDTA. Sedimentation patterns show that DNA from spores of both strains 33A and 51B did not show any postirradiation repair during the first 6 h of germination, as opposed to Bacillus subtilis spores, which exhibit repair immediately after germination. These observations suggest the existence of direct repair in physiological dormant spores of strain 33A in the cryptobiotic resting state in the absence of germination. The repair seems to be similar to that of polynucleotide ligase activity shown to be operative in some vegetative cells. Apparently radiation-sensitive strains such as 51B and B. subtilis are generally poor in DNA repair enzyme activity under conditions of spore dormancy, which may account for the approximately threefold difference in radiation sensitivity or DNA fragility of different strains, or both.

Full text

PDF
129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANELLIS A., KOCH R. B. Comparative resistance of strains of Clostridium botulinum to gamma rays. Appl Microbiol. 1962 Jul;10:326–330. doi: 10.1128/am.10.4.326-330.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg P. E., Grecz N. Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance. J Bacteriol. 1970 Aug;103(2):517–519. doi: 10.1128/jb.103.2.517-519.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyce R. P., Tepper M. X-ray-induced single-strand breaks and joining of broken strands in superinfecting lambda DNA in Escherichia coli lysogenic for lambda. Virology. 1968 Feb;34(2):344–351. doi: 10.1016/0042-6822(68)90245-6. [DOI] [PubMed] [Google Scholar]
  5. CHURCH B. D., HALVORSON H. Intermediate metabolism of aerobic spores. I. Activation of glucose oxidation in spores of Bacillus cereus var terminalis. J Bacteriol. 1957 Apr;73(4):470–476. doi: 10.1128/jb.73.4.470-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CROOK P. G. The effect of heat and glucose on endogenous endospore respiration utilizing a modified Scholander Microrespirometer. J Bacteriol. 1952 Feb;63(2):193–198. doi: 10.1128/jb.63.2.193-198.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dean C. J., Ormerod M. G., Serianni R. W., Alexander P. DNA strand breakage in cells irradiated with x-rays. Nature. 1969 Jun 14;222(5198):1042–1044. doi: 10.1038/2221042a0. [DOI] [PubMed] [Google Scholar]
  8. Dean C., Pauling C. Properties of a deoxyribonucleic acid ligase mutant of Escherichia coli: x-ray sensitivity. J Bacteriol. 1970 May;102(2):588–589. doi: 10.1128/jb.102.2.588-589.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dennis E. S., Wake R. G. Autoradiography of the Bacillus subtilis chromosome. J Mol Biol. 1966 Feb;15(2):435–439. doi: 10.1016/s0022-2836(66)80119-5. [DOI] [PubMed] [Google Scholar]
  10. Driedger A. A., Grayston M. J. Demonstration of two types of DNA repair in X-irradiated Micrococcus radiodurans. Can J Microbiol. 1971 Apr;17(4):495–499. doi: 10.1139/m71-082. [DOI] [PubMed] [Google Scholar]
  11. Durban E., Grecz N. Resistance of spores of Clostridium botulinum 33A to combinations of ultraviolet and gamma rays. Appl Microbiol. 1969 Jul;18(1):44–50. doi: 10.1128/am.18.1.44-50.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eller C., Rogers L., Wynne E. S. Agar concentration in counting Clostridium colonies. Appl Microbiol. 1967 Jan;15(1):55–57. doi: 10.1128/am.15.1.55-57.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FARMER J. L., ROTHMAN F. TRANSFORMABLE THYMINE-REQUIRING MUTANT OF BACILLUS SUBTILS. J Bacteriol. 1965 Jan;89:262–263. doi: 10.1128/jb.89.1.262-263.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FITZ-JAMES P. C., YOUNG I. E. Comparison of species and yarieties of the genus Bacillus. Structure and nucleic acid content of spores. J Bacteriol. 1959 Dec;78:743–754. doi: 10.1128/jb.78.6.743-754.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GRECZ N., ANELLIS A., SCHNEIDER M. D. Procedure for cleaning of Clostridium botulinum spores. J Bacteriol. 1962 Sep;84:552–558. doi: 10.1128/jb.84.3.552-558.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gefter M. L., Becker A., Hurwitz J. The enzymatic repair of DNA. I. Formation of circular lambda-DNA. Proc Natl Acad Sci U S A. 1967 Jul;58(1):240–247. doi: 10.1073/pnas.58.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gellert M. Formation of covalent circles of lambda DNA by E. coli extracts. Proc Natl Acad Sci U S A. 1967 Jan;57(1):148–155. doi: 10.1073/pnas.57.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gellert M., Little J. W., Oshinsky C. K., Zimmerman S. B. Joining of DNA strands by DNA ligase of E. coli. Cold Spring Harb Symp Quant Biol. 1968;33:21–26. doi: 10.1101/sqb.1968.033.01.007. [DOI] [PubMed] [Google Scholar]
  19. Kaplan H. S. DNA-strand scission and loss of viability after x irradiation of normal and sensitized bacterial cells. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1442–1446. doi: 10.1073/pnas.55.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kornberg A. Active center of DNA polymerase. Science. 1969 Mar 28;163(3874):1410–1418. doi: 10.1126/science.163.3874.1410. [DOI] [PubMed] [Google Scholar]
  21. Little J. W., Zimmerman S. B., Oshinsky C. K., Gellert M. Enzymatic joining of DNA strands, II. An enzyme-adenylate intermediate in the dpn-dependent DNA ligase reaction. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2004–2011. doi: 10.1073/pnas.58.5.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Massie H. R., Zimm B. H. Molecular weight of the DNA in the chromosomes of E. coli and B. subtilis. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1636–1641. doi: 10.1073/pnas.54.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  24. Mizutani S., Temin H. M., Kodama M., Wells R. T. DNA ligase and exonuclease activities in virions of rous sarcoma virus. Nat New Biol. 1971 Apr 21;230(16):232–235. doi: 10.1038/newbio230232a0. [DOI] [PubMed] [Google Scholar]
  25. Ogawa H., Tomizawa J. Breakage of polynucleotide strands by disintegration of radiophosphorus atoms in DNA molecules and their repair. I. Single-strand breakage by transmutation. J Mol Biol. 1967 Nov 28;30(1):1–6. doi: 10.1016/0022-2836(67)90238-0. [DOI] [PubMed] [Google Scholar]
  26. Olivera B. M., Lehman I. R. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 May;57(5):1426–1433. doi: 10.1073/pnas.57.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  28. Sakakibara Y., Tanooka H., Terano H. Defined conditions for DNA extraction from Bacillus subtilis spores. Biochim Biophys Acta. 1970 Feb 18;199(2):548–550. doi: 10.1016/0005-2787(70)90104-8. [DOI] [PubMed] [Google Scholar]
  29. TYLER S. A., DIPERT M. H. On estimating the constants of the 'multi-hit' curve using a medium speed digital computer. Phys Med Biol. 1962 Oct;7:201–212. doi: 10.1088/0031-9155/7/2/306. [DOI] [PubMed] [Google Scholar]
  30. Tanooka H., Sakakibara Y. Radioresistant nature of the transforming activity of DNA in bacterial spores. Biochim Biophys Acta. 1968 Jan 29;155(1):130–142. doi: 10.1016/0005-2787(68)90343-2. [DOI] [PubMed] [Google Scholar]
  31. Tanooka H., Terano H. Resistance of DNA against radiation-induced strand breakage in bacterial spores. Radiat Res. 1970 Sep;43(3):613–626. [PubMed] [Google Scholar]
  32. Terano H., Tanooka H., Kadota H. Germination-induced repair of single-strand breaks of DNA in irradiated Bacillus subtilis spores. Biochem Biophys Res Commun. 1969 Sep 24;37(1):66–71. doi: 10.1016/0006-291x(69)90881-x. [DOI] [PubMed] [Google Scholar]
  33. Terano H., Tanooka H., Kadota H. Repair of radiation damage to deoxyribonucleic acid in germinating spores of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):925–930. doi: 10.1128/jb.106.3.925-930.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weiss B., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1021–1028. doi: 10.1073/pnas.57.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamagishi H. Sedimentation of high molecular weight DNA released from protoplasts of Bacillus subtilis. Nature. 1968 Sep 21;219(5160):1251–1252. doi: 10.1038/2191251a0. [DOI] [PubMed] [Google Scholar]
  37. Zimmerman S. B., Little J. W., Oshinsky C. K., Gellert M. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1841–1848. doi: 10.1073/pnas.57.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES