Abstract
Two criteria suggest that most of the proteinase of Streptococcus lactis is localized in the cell wall. (i) Intact cells possess proteinase activity when incubated with a high-molecular-weight substrate. (ii) Most of the cell-bound proteinase activity is released during spheroplast formation under conditions which result in the release of only 1% of the intracellular enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase. The solubilized cell wall, plasma membrane, and cytoplasm fractions contained 84, 0, and 16%, respectively, of the total proteinase activity with casein as substrate. The physiological role of a surface-bound proteinase in this organism is discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN W. C., SANDINE W. E., ELLIKER P. R. Lysis of lactic acid bacteria by lysozyme and ethylenediaminetetraacetic acid. J Bacteriol. 1962 Mar;83:697–698. doi: 10.1128/jb.83.3.697-698.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman R. A., Speck M. L. Proteinase enzyme system of lactic streptococci. I. Isolation and partial characterization. Appl Microbiol. 1967 Jul;15(4):851–856. doi: 10.1128/am.15.4.851-856.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman R. A., Swaisgood H. E., Speck M. L. Proteinase enzyme system of lactic streptococci. II. Role of membrane proteinase in cellular function. J Bacteriol. 1967 Oct;94(4):942–948. doi: 10.1128/jb.94.4.942-948.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEUSON J. C. Measurement of proteolytic activity of blood with a substrate tagged with radioactive iodine. J Lab Clin Med. 1959 Aug;54:284–287. [PubMed] [Google Scholar]
- Kruse H., Hurst A. Preparation of spheroplasts from Streptococcus lactis. Can J Microbiol. 1972 Jun;18(6):825–831. doi: 10.1139/m72-128. [DOI] [PubMed] [Google Scholar]
- Marrink J., Gruber M. Use of casein in assays for proteolytic activity in tissue extracts: a warning. Biochim Biophys Acta. 1966 May 5;118(2):438–439. doi: 10.1016/s0926-6593(66)80058-9. [DOI] [PubMed] [Google Scholar]
- May B. K., Elliott W. H. Characteristics of extracellular protease formation by Bacillus subtilis and its control by amino acid repression. Biochim Biophys Acta. 1968 May 21;157(3):607–615. doi: 10.1016/0005-2787(68)90158-5. [DOI] [PubMed] [Google Scholar]
- Pepper L. Casein interactions as studied by gel chromatography and ultracentrifugation. Biochim Biophys Acta. 1972 Aug 31;278(1):147–154. doi: 10.1016/0005-2795(72)90116-x. [DOI] [PubMed] [Google Scholar]
- Salton M. R., Netschey A. Physical chemistry of isolated bacterial membranes. Biochim Biophys Acta. 1965 Oct 18;107(3):539–545. doi: 10.1016/0304-4165(65)90198-4. [DOI] [PubMed] [Google Scholar]
- Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsugita A., Inouye M. Purification of bacteriophage T4 lysozyme. J Biol Chem. 1968 Jan 25;243(2):391–397. [PubMed] [Google Scholar]
- Waugh D. F., Creamer L. K., Slattery C. W., Dresdner G. W. Core polymers of casein micelles. Biochemistry. 1970 Feb 17;9(4):786–795. doi: 10.1021/bi00806a011. [DOI] [PubMed] [Google Scholar]