Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):329–333. doi: 10.1128/jb.118.2.329-333.1974

Localization of Proteinase(s) near the Cell Surface of Streptococcus lactis

T D Thomas a, B D W Jarvis a, N A Skipper a,1
PMCID: PMC246762  PMID: 4208129

Abstract

Two criteria suggest that most of the proteinase of Streptococcus lactis is localized in the cell wall. (i) Intact cells possess proteinase activity when incubated with a high-molecular-weight substrate. (ii) Most of the cell-bound proteinase activity is released during spheroplast formation under conditions which result in the release of only 1% of the intracellular enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase. The solubilized cell wall, plasma membrane, and cytoplasm fractions contained 84, 0, and 16%, respectively, of the total proteinase activity with casein as substrate. The physiological role of a surface-bound proteinase in this organism is discussed.

Full text

PDF
329

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN W. C., SANDINE W. E., ELLIKER P. R. Lysis of lactic acid bacteria by lysozyme and ethylenediaminetetraacetic acid. J Bacteriol. 1962 Mar;83:697–698. doi: 10.1128/jb.83.3.697-698.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cowman R. A., Speck M. L. Proteinase enzyme system of lactic streptococci. I. Isolation and partial characterization. Appl Microbiol. 1967 Jul;15(4):851–856. doi: 10.1128/am.15.4.851-856.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cowman R. A., Swaisgood H. E., Speck M. L. Proteinase enzyme system of lactic streptococci. II. Role of membrane proteinase in cellular function. J Bacteriol. 1967 Oct;94(4):942–948. doi: 10.1128/jb.94.4.942-948.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HEUSON J. C. Measurement of proteolytic activity of blood with a substrate tagged with radioactive iodine. J Lab Clin Med. 1959 Aug;54:284–287. [PubMed] [Google Scholar]
  5. Kruse H., Hurst A. Preparation of spheroplasts from Streptococcus lactis. Can J Microbiol. 1972 Jun;18(6):825–831. doi: 10.1139/m72-128. [DOI] [PubMed] [Google Scholar]
  6. Marrink J., Gruber M. Use of casein in assays for proteolytic activity in tissue extracts: a warning. Biochim Biophys Acta. 1966 May 5;118(2):438–439. doi: 10.1016/s0926-6593(66)80058-9. [DOI] [PubMed] [Google Scholar]
  7. May B. K., Elliott W. H. Characteristics of extracellular protease formation by Bacillus subtilis and its control by amino acid repression. Biochim Biophys Acta. 1968 May 21;157(3):607–615. doi: 10.1016/0005-2787(68)90158-5. [DOI] [PubMed] [Google Scholar]
  8. Pepper L. Casein interactions as studied by gel chromatography and ultracentrifugation. Biochim Biophys Acta. 1972 Aug 31;278(1):147–154. doi: 10.1016/0005-2795(72)90116-x. [DOI] [PubMed] [Google Scholar]
  9. Salton M. R., Netschey A. Physical chemistry of isolated bacterial membranes. Biochim Biophys Acta. 1965 Oct 18;107(3):539–545. doi: 10.1016/0304-4165(65)90198-4. [DOI] [PubMed] [Google Scholar]
  10. Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tsugita A., Inouye M. Purification of bacteriophage T4 lysozyme. J Biol Chem. 1968 Jan 25;243(2):391–397. [PubMed] [Google Scholar]
  12. Waugh D. F., Creamer L. K., Slattery C. W., Dresdner G. W. Core polymers of casein micelles. Biochemistry. 1970 Feb 17;9(4):786–795. doi: 10.1021/bi00806a011. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES