Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):414–424. doi: 10.1128/jb.118.2.414-424.1974

Properties of α-Aminoisobutyric Acid Transport in a Thermophilic Microorganism

Jonathan Reizer 1, Nathan Grossowicz 1
PMCID: PMC246773  PMID: 4828307

Abstract

Uptake of α-aminoisobutyric acid (AIB) by a leucine-tyrosine auxotroph of a thermophilic microorganism starved for leucine was studied. AIB was taken up by the cells against a substantial concentration gradient (300:1) and was present there in a free and unchanged form. Various energy inhibitors and sulfhydryl reagents strongly inhibited the accumulation of AIB. AIB uptake obeyed saturation kinetics, and the Lineweaver-Burk plot is characterized by a biphasic curve. AIB most probably shares a common transport system(s) with alanine, serine, and glycine. A mutant defective in l-alanine uptake was isolated by using the suicide effect due to accumulation of the tritiated substrate. The mutant also exhibited impaired transport activity towards AIB, glycine, and l-serine, but not to phenylalanine or valine. The transport of AIB, glycine, l-alanine, and l-serine was induced by d-alanine (5 × 10−3 M) during growth in a succinate- and ammonia-containing medium. De novo protein synthesis was required for the induction of AIB transport; the induction was inhibited when growth occurred in glucose-containing media. The apparent differential rate of synthesis of the AIB transport system was decreased considerably in glucose-grown cells as compared to succinate-grown cells. A common genetic basis of either the regulatory or structural nature for the transport of AIB, alanine, glycine, and serine in a thermophilic microorganism is suggested.

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKEDO H., CHRISTENSEN H. N. Transfer of amino acids across the intestine: a new model amino acid. J Biol Chem. 1962 Jan;237:113–117. [PubMed] [Google Scholar]
  2. AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
  3. BURROUS S. E., DEMOSS R. D. STUDIES ON TRYPTOPHAN PERMEASE IN ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Aug 6;73:623–637. doi: 10.1016/0006-3002(63)90332-9. [DOI] [PubMed] [Google Scholar]
  4. Brock T. D., Brock M. L., Bott T. L., Edwards M. R. Microbial life at 90 C: the sulfur bacteria of Boulder Spring. J Bacteriol. 1971 Jul;107(1):303–314. doi: 10.1128/jb.107.1.303-314.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bubela B., Holdsworth E. S. Amino acid uptake, protein and nucleic acid synthesis and turnover in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):364–375. doi: 10.1016/0005-2787(66)90289-9. [DOI] [PubMed] [Google Scholar]
  6. Epstein I., Grossowicz N. Prototrophic thermophilic bacillus: isolation, properties, and kinetics of growth. J Bacteriol. 1969 Aug;99(2):414–417. doi: 10.1128/jb.99.2.414-417.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frank L., Hopkins I. Sodium-stimulated transport of glutamate in Escherichia coli. J Bacteriol. 1969 Oct;100(1):329–336. doi: 10.1128/jb.100.1.329-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geck P., Heinz E., Pfeiffer B. The degree and the efficiency of coupling between the influxes of Na + and -aminoisobutyrate in Ehrlich cells. Biochim Biophys Acta. 1972 Nov 2;288(2):486–491. doi: 10.1016/0005-2736(72)90272-6. [DOI] [PubMed] [Google Scholar]
  9. Gryder R. M., Adams E. Properties of the inducible hydroxyproline transport system of Pseudomonas putida. J Bacteriol. 1970 Mar;101(3):948–958. doi: 10.1128/jb.101.3.948-958.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halpern Y. S., Barash H., Dover S., Druck K. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12. J Bacteriol. 1973 Apr;114(1):53–58. doi: 10.1128/jb.114.1.53-58.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halpern Y. S., Even-Shoshan A. Properties of the glutamate transport system in Escherichia coli. J Bacteriol. 1967 Mar;93(3):1009–1016. doi: 10.1128/jb.93.3.1009-1016.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris P., Kornberg H. L. The uptake of glucose by a thermophilic Bacillus sp. Proc R Soc Lond B Biol Sci. 1972 Sep 19;182(1067):159–170. doi: 10.1098/rspb.1972.0072. [DOI] [PubMed] [Google Scholar]
  13. Kay W. W., Gronlund A. F. Proline transport by Pseudomonas aeruginosa. Biochim Biophys Acta. 1969;193(2):444–455. doi: 10.1016/0005-2736(69)90203-x. [DOI] [PubMed] [Google Scholar]
  14. Kay W. W. Two aspartate transport systems in Escherichia coli. J Biol Chem. 1971 Dec 10;246(23):7373–7382. [PubMed] [Google Scholar]
  15. Kotyk A., Ponec M., Ríhová L. Uptake of amino acids by actidione-treated yeast cells. I. Specificity of carriers. Folia Microbiol (Praha) 1971;16(6):432–444. doi: 10.1007/BF02872715. [DOI] [PubMed] [Google Scholar]
  16. Kotyk A., Ríhová L. Transport of -aminoisobutyric acid in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Nov 2;288(2):380–389. doi: 10.1016/0005-2736(72)90259-3. [DOI] [PubMed] [Google Scholar]
  17. Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
  18. Lo T. C., Rayman M. K., Sanwal B. D. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J Biol Chem. 1972 Oct 10;247(19):6323–6331. [PubMed] [Google Scholar]
  19. Lyon R. H., Rogers P., Hall W. H., Lichtein H. C. Inducible glutamate transport in Mycobacteria and its relation to glutamate oxidation. J Bacteriol. 1967 Jul;94(1):92–100. doi: 10.1128/jb.94.1.92-100.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MARQUIS R. E., GERHARDT P. RESPIRATION-COUPLED AND PASSIVE UPTAKE OF ALPHA-AMINOISOBUTYRIC ACID, A METABOLICALLY INERT TRANSPORT ANALOGUE, BY BACILLUS MEGATERIUM. J Biol Chem. 1964 Oct;239:3361–3371. [PubMed] [Google Scholar]
  21. Oxender D. L. Membrane transport. Annu Rev Biochem. 1972;41(10):777–814. doi: 10.1146/annurev.bi.41.070172.004021. [DOI] [PubMed] [Google Scholar]
  22. RICHMOND M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962 Dec;26:398–420. doi: 10.1128/br.26.4.398-420.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stock J., Roseman S. A sodium-dependent sugar co-transport system in bacteria. Biochem Biophys Res Commun. 1971 Jul 2;44(1):132–138. doi: 10.1016/s0006-291x(71)80168-7. [DOI] [PubMed] [Google Scholar]
  24. Tsay S. S., Brown K. K., Gaudy E. T. Transport of glycerol by Pseudomonas aeruginosa. J Bacteriol. 1971 Oct;108(1):82–88. doi: 10.1128/jb.108.1.82-88.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilson T. H., Kashket E. R. Isolation and properties of thiogalactoside transacetylase-negative mutants of Escherichia coli. Biochim Biophys Acta. 1969 Apr;173(3):501–508. doi: 10.1016/0005-2736(69)90014-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES