Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):514–522. doi: 10.1128/jb.118.2.514-522.1974

Integration and Repair of Ultraviolet-Irradiated Transforming Deoxyribonucleic Acid in Haemophilus influenzae

Amir Muhammed a,1, Jane K Setlow a
PMCID: PMC246784  PMID: 4545328

Abstract

The extent of association between donor transforming deoxyribonucleic acid (DNA) and recipient DNA in Haemophilus influenzae as a function of ultraviolet (UV) dose to the transforming DNA has been measured by isopycnic analysis of lysates of 3H-labeled recipient cells exposed to DNA labeled with 32P and heavy isotopes. Except for doses above 15,000 ergs/mm2, the results of these measurements are in good agreement with previous estimates made by another technique. Experiments with a mutant temperature sensitive for DNA synthesis and another mutant defective in excision of pyrimidine dimers suggest that the discrepancy between the methods of high doses results from DNA synthesis, in which portions of the associated donor DNA containing pyrimidine dimers are excised and broken down, and the components are reutilized for synthesis.

Repair of UV-irradiated, transforming DNA during incubation of recipient cells is observed as an increase in transforming ability when fractions from CsCl gradients of cell lysates are assayed on excision-deficient cells. When transforming DNA containing markers of different UV sensitivities is used, repair of the UV-resistant nov marker by excision proficient cells takes place exclusively in the donor DNA that is associated with recipient DNA, and this repair is observed even in the absence of DNA synthesis. However, no repair is observed in the case of the more UV-sensitive str marker, possibly because excision events may remove a large fraction of the integrated str markers in addition to repairing a small fraction of the integrated DNA containing this marker.

Full text

PDF
514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie K. L., Setlow J. K. Killing of Haemophilus influenzae cells by integrated ultraviolet-induced lesions from transforming deoxyribonucleic acid. J Bacteriol. 1969 Dec;100(3):1284–1288. doi: 10.1128/jb.100.3.1284-1288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beattie K. L., Setlow J. K. Repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Haemophilus influenzae. J Bacteriol. 1970 Mar;101(3):808–812. doi: 10.1128/jb.101.3.808-812.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bresler S. E., Kalinin V. L., Perumov D. A. Inactivation and mutagenesis on isolated DNA. Iv. Possibility of integration of lethal damage into the chromosome of Bacillus subtillis during transformation. Mutat Res. 1968 May-Jun;5(3):329–341. doi: 10.1016/0027-5107(68)90003-1. [DOI] [PubMed] [Google Scholar]
  4. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA. Mutat Res. 1972 Aug;15(4):395–409. doi: 10.1016/0027-5107(72)90004-8. [DOI] [PubMed] [Google Scholar]
  5. Day R. S., 3rd, Rupert C. S. Ultraviolet sensitivity of Haemophilus influenzae transforming DNA. II. A reextraction study of integration and repair. Mutat Res. 1971 Mar;11(3):313–326. [PubMed] [Google Scholar]
  6. GOODGAL S. H. Studies on transformations of Hemophilus influenzae. IV. Linked and unlinked transformations. J Gen Physiol. 1961 Nov;45:205–228. doi: 10.1085/jgp.45.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LERMAN L. S., TOLMACH L. J. Genetic transformation. II. The significance of damage to the DNA molecule. Biochim Biophys Acta. 1959 Jun;33(2):371–387. doi: 10.1016/0006-3002(59)90127-1. [DOI] [PubMed] [Google Scholar]
  8. Muhammed A., Setlow J. K. Ultraviolet-induced decrease in integration of Haemophilus influenzae transforming deoxyribonucleic acid in sensitive and resistant cells. J Bacteriol. 1970 Feb;101(2):444–448. doi: 10.1128/jb.101.2.444-448.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Notani N. K., Goodgal S. H. Decrease in integration of transforming DNA of Hemophilus influenzae following ultraviolet irradiation. J Mol Biol. 1965 Sep;13(2):611–613. doi: 10.1016/s0022-2836(65)80126-7. [DOI] [PubMed] [Google Scholar]
  10. Notani N. K., Setlow J. K., Joshi V. R., Allison D. P. Molecular basis for the transformation defects in mutants of Haemophilus influenzae. J Bacteriol. 1972 Jun;110(3):1171–1180. doi: 10.1128/jb.110.3.1171-1180.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol. 1968;33:209–218. doi: 10.1101/sqb.1968.033.01.024. [DOI] [PubMed] [Google Scholar]
  13. Setlow R. B., Setlow J. K., Carrier W. L. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: its action on transforming deoxyribonucleic acid. J Bacteriol. 1970 Apr;102(1):187–192. doi: 10.1128/jb.102.1.187-192.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinhart W. L., Herriott R. M. Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae. J Bacteriol. 1968 Nov;96(5):1718–1724. doi: 10.1128/jb.96.5.1718-1724.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES