Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):541–550. doi: 10.1128/jb.118.2.541-550.1974

Substrate Specificity of the Purified Primary Alcohol Dehydrogenases from Methanol-Oxidizing Bacteria

George T Sperl a,1, Hugh S Forrest a, David T Gibson a
PMCID: PMC246787  PMID: 4828309

Abstract

Hyphomicrobium strain WC, Pseudomonas strain TP-1, and Pseudomonas strain W1 are capable of growth on methanol as the sole source of carbon and energy. Methanol-grown cells of each organism contain a primary alcohol dehydrogenase that has been purified to homogeneity. Each enzyme has a molecular weight of 120,000 and shows an in vitro requirement for phenazine methosulfate and ammonium ions for enzymatic activity. Normal aliphatic alcohols are oxidized rapidly by each enzyme. The presence of a methyl group on the carbon atom adjacent to the primary alcohol group lowers the enzymatic activity. This effect is reduced as the methyl substituent is moved further away from the hydroxyl group. The effect of other substituents on enzymatic activity is reported. Methanol, formaldehyde, and to a limited extent acetaldehyde are oxidized by the primary alcohol dehydrogenases. Higher aldehydes are not oxidized. A possible explanation for this specificity, with regard to aldehydes, is presented in terms of degree of hydration of the aldehyde.

Full text

PDF
541

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELES R. H., LEE H. A., Jr The dismutation of formaldehyde by liver alcohol dehydrogenase. J Biol Chem. 1960 May;235:1499–1503. [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anthony C., Zatman L. J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J. 1964 Sep;92(3):614–621. doi: 10.1042/bj0920614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anthony C., Zatman L. J. The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J. 1967 Sep;104(3):953–959. doi: 10.1042/bj1040953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anthony C., Zatman L. J. The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J. 1965 Sep;96(3):808–812. doi: 10.1042/bj0960808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anthony C., Zatman L. J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J. 1967 Sep;104(3):960–969. doi: 10.1042/bj1040960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cazzulo J. J., Vidal M. C. Effect of monovalent cations on the malic enzyme from the extreme halophile, Halobacterium cutirubrum. J Bacteriol. 1972 Jan;109(1):437–439. doi: 10.1128/jb.109.1.437-439.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  9. Heptinstall J., Quayle J. R. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochem J. 1970 Apr;117(3):563–572. doi: 10.1042/bj1170563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LAWRENCE S. H., MELNICK P. J., WEIMER H. E. A species comparison of serum proteins and enzymes by starch gel electrophoresis. Proc Soc Exp Biol Med. 1960 Dec;105:572–575. doi: 10.3181/00379727-105-26180. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Patel R. N., Hoare D. S. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus. J Bacteriol. 1971 Jul;107(1):187–192. doi: 10.1128/jb.107.1.187-192.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patel R. N., Mandy W. J., Hoare D. S. Physiological studies of methane- and methanol-oxidizing bacteria: immunological comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus and Pseudomonas sp. M27. J Bacteriol. 1973 Feb;113(2):937–945. doi: 10.1128/jb.113.2.937-945.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Razzell W. E., Blackmore R. W. Aldehyde dehydrogenase in pseudomonads. Can J Microbiol. 1969 Jun;15(6):645–647. doi: 10.1139/m69-112. [DOI] [PubMed] [Google Scholar]
  16. Sperl G. T., Hoare D. S. Denitrification with methanol: a selective enrichment for Hyphomicrobium species. J Bacteriol. 1971 Nov;108(2):733–736. doi: 10.1128/jb.108.2.733-736.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES