Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):577–581. doi: 10.1128/jb.118.2.577-581.1974

Homoserine Kinase from Escherichia coli K-12: Properties, Inhibition by l-Threonine, and Regulation of Biosynthesis

J Theze 1, L Kleidman 1, I Saint Girons 1
PMCID: PMC246790  PMID: 4364023

Abstract

We have partially purified homoserine kinase from a genetically derepressed strain of Escherichia coli K-12. The optimum pH of the enzyme-substrate reaction was 7.8 and the Km values for l-homoserine and adenosine 5′-triphosphate were both 3 × 10−4 M. K+ (or NH4+) as well as Mg2+ were required for its activity. The sedimentation coefficient determined by ultracentrifugation in a sucrose density gradient was 5.0 ± 0.25S. l-Homoserine was an excellent protector against heat inactivation of homoserine kinase. l-Threonine was a competitive inhibitor of homoserine kinase, suggesting that end-product inhibition of this enzyme plays a role in vivo in the overall regulation of threonine biosynthesis. The specific activity of aspartokinase I-homoserine dehydrogenase I and of homoserine kinase showed a strong positive correlation in extracts from strains under widely varying conditions of genetic or physiological derepression; it was concluded that these two enzymes are coordinately regulated in E. coli K-12.

Full text

PDF
577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
  2. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dwyer S. B., Umbarger H. E. Isoleucine and valine metabolism of Escherichia coli. XVI. Pattern of multivalent repression in strain K-12. J Bacteriol. 1968 May;95(5):1680–1684. doi: 10.1128/jb.95.5.1680-1684.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Falcoz-Kelly F., Janin J., Saari J. C., Véron M., Truffa-Bachi P., Cohen G. N. Revised structure of aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12. Evidence for four identical subunits. Eur J Biochem. 1972 Aug 4;28(4):507–519. doi: 10.1111/j.1432-1033.1972.tb01938.x. [DOI] [PubMed] [Google Scholar]
  5. Hütter R., Poralla K., Zachau H. G., Zähner H. Stoffwechselprodukte von Mikroorganismen. 51. Uber die Wirkungsweise von Borrelidin-Hemmung des Threonineinbaus in sRNA. Biochem Z. 1966 Mar 28;344(2):190–196. [PubMed] [Google Scholar]
  6. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  7. Nass G., Poralla K., Zähner H. Effect of the antibiotic Borrelidin on the regulation of threonine biosynthetic enzymes in E. coli. Biochem Biophys Res Commun. 1969 Jan 6;34(1):84–91. doi: 10.1016/0006-291x(69)90532-4. [DOI] [PubMed] [Google Scholar]
  8. Szentirmai A., Szentirmai M., Umbarger H. E. Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J Bacteriol. 1968 May;95(5):1672–1679. doi: 10.1128/jb.95.5.1672-1679.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thèze J., Margarita D., Cohen G. N., Borne F., Patte J. C. Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol. 1974 Jan;117(1):133–143. doi: 10.1128/jb.117.1.133-143.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Truffa-Bachi P., Van Rapenbusch R., Janin J., Gros C., Cohen G. N. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K 12. 4. Isolation, molecular weight, amino acid analysis and behaviour of the sulfhydryl groups of the protein catalyzing the two activities. Eur J Biochem. 1968 Jun;5(1):73–80. doi: 10.1111/j.1432-1033.1968.tb00339.x. [DOI] [PubMed] [Google Scholar]
  12. WORMSER E. H., PARDEE A. B. Regulation of threonine biosynthesis in Escherichia coli. Arch Biochem Biophys. 1958 Dec;78(2):416–432. doi: 10.1016/0003-9861(58)90367-9. [DOI] [PubMed] [Google Scholar]
  13. WYMAN J., Jr LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. Adv Protein Chem. 1964;19:223–286. doi: 10.1016/s0065-3233(08)60190-4. [DOI] [PubMed] [Google Scholar]
  14. Wampler D. E., Westhead E. W. Two aspartokinases from Escherichia coli. Nature of the inhibition and molecular changes accompanying reversible inactivation. Biochemistry. 1968 May;7(5):1661–1671. doi: 10.1021/bi00845a007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES