Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 May;118(2):606–615. doi: 10.1128/jb.118.2.606-615.1974

Polyelectrolyte Nature of Bacterial Teichoic Acids

R J Doyle 1, M L McDannel 1, U N Streips 1, D C Birdsell 1, F E Young 1
PMCID: PMC246794  PMID: 4208136

Abstract

Several physicochemical properties of the teichoic acid of Bacillus subtilis 168 have been determined. The teichoic acid partial specific volume was found to be 0.57 ml/g. The apparent weight-average molecular weight of the polymer was 24,800. Sedimentation was strongly dependent on solvent. The sedimentation coefficient of the teichoic acid was found to have a value of s20.w0 = 1.90S. In dilute buffers and distilled water, the teichoic acid possessed a rigid rod or extended conformation. Salts induced a loss of secondary structure in the polymer, resulting in a random coil configuration. Salt-induced structural changes in the teichoic acid were determined by viscosities, ultraviolet difference spectra, and inhibition of precipitation with concanavalin A. Divalent cations such as Mg2+ had little effect on the teichoic acid structure. The salt-induced structural changes were reversible, as evidenced by return of the original properties upon dialysis of the teichoic acid against water. Sodium chloride inhibited the adsorption of bacteriophage ø25 to B. subtilis cell walls. Teichoic acid conformation may have a significant influence on the physiology of bacteria.

Full text

PDF
606

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal B. B., Goldstein I. J., Hassing G. S., So L. L. Protein--carbohydrate interaction. 18. The preparation and properties of acetylated concanavalin A, the hemagglutinin of the jack bean. Biochemistry. 1968 Dec;7(12):4211–4218. doi: 10.1021/bi00852a011. [DOI] [PubMed] [Google Scholar]
  2. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim Biophys Acta. 1967 Oct 23;147(2):262–271. [PubMed] [Google Scholar]
  3. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VII. Physical and chemical studies on concanavalin A, the hemagglutinin of the jack bean. Arch Biochem Biophys. 1968 Mar 20;124(1):218–229. doi: 10.1016/0003-9861(68)90322-6. [DOI] [PubMed] [Google Scholar]
  4. Archibald A. R., Baddiley J., Blumsom N. L. The teichoic acids. Adv Enzymol Relat Areas Mol Biol. 1968;30:223–253. doi: 10.1002/9780470122754.ch5. [DOI] [PubMed] [Google Scholar]
  5. Archibald A. R., Coapes H. E. The interaction of concanavalin A with teichoic acids and bacterial walls. Biochem J. 1971 Jul;123(4):665–667. doi: 10.1042/bj1230665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BELLO J., BELLO H. R., VINOGRAD J. R. The functional groups in the gelation of gelatin. Biochim Biophys Acta. 1962 Feb 26;57:222–229. doi: 10.1016/0006-3002(62)91114-9. [DOI] [PubMed] [Google Scholar]
  7. Brown W. C., Fraser D. K., Young F. E. Problems in purification of a Bacillus subtilis autolytic enzyme caused by association with teichoic acid. Biochim Biophys Acta. 1970 Feb 11;198(2):308–315. doi: 10.1016/0005-2744(70)90063-x. [DOI] [PubMed] [Google Scholar]
  8. Doyle R. J., Birdsell D. C. Interaction of concanavalin A with the cell wall of Bacillus subtilis. J Bacteriol. 1972 Feb;109(2):652–658. doi: 10.1128/jb.109.2.652-658.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle R. J., Birdsell D. C., Young F. E. Isolation of the teichoic acid of Bacillus subtilis 168 by affinity chromatography. Prep Biochem. 1973;3(1):13–18. doi: 10.1080/00327487308061485. [DOI] [PubMed] [Google Scholar]
  10. Doyle R. J. Modification of bacteriophage phi 25 adsorption to Bacillus subtilis by concanavalin A. J Bacteriol. 1973 Jan;113(1):198–202. doi: 10.1128/jb.113.1.198-202.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glaser L., Ionesco H., Schaeffer P. Teichoic acids as components of a specific phage receptor in Bacillus subtilis. Biochim Biophys Acta. 1966 Aug 24;124(2):415–417. doi: 10.1016/0304-4165(66)90211-x. [DOI] [PubMed] [Google Scholar]
  12. Hughes A. H., Hancock I. C., Baddiley J. The function of teichoic acids in cation control in bacterial membranes. Biochem J. 1973 Jan;132(1):83–93. doi: 10.1042/bj1320083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knox K. W., Wicken A. J. Non-specific inhibition of the precipitin reaction between teichoic acids and antisera. Immunochemistry. 1973 Feb;10(2):93–98. doi: 10.1016/0019-2791(73)90235-8. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MOKRASCH L. C. Analysis of hexose phosphates and sugar mixtures with the anthrone reagent. J Biol Chem. 1954 May;208(1):55–59. [PubMed] [Google Scholar]
  16. Marquis R. E. Salt-induced contraction of bacterial cell walls. J Bacteriol. 1968 Mar;95(3):775–781. doi: 10.1128/jb.95.3.775-781.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matheson A., Kwong M. C., Cheung R. Influences of environmental ionic strength, pH, and magnesium ion on bactericidal and lytic activities of -lysin on Bacillus subtilis. Can J Microbiol. 1972 Nov;18(11):1665–1670. doi: 10.1139/m72-258. [DOI] [PubMed] [Google Scholar]
  18. Ou L. T., Chatterjee A. N., Young F. E., Marquis R. E. The physiology of teichoic acid deficient staphylococci. Can J Microbiol. 1973 Nov;19(11):1393–1399. doi: 10.1139/m73-225. [DOI] [PubMed] [Google Scholar]
  19. Reeder W. J., Ekstedt R. D. Study of the interaction of concanavalin A with staphylocccal teichoic acids. J Immunol. 1971 Feb;106(2):334–340. [PubMed] [Google Scholar]
  20. Reusch V. M., Jr, Neuhaus F. C. D-Alanine: membrane acceptor ligase from Lactobacillus casei. J Biol Chem. 1971 Oct 25;246(20):6136–6143. [PubMed] [Google Scholar]
  21. SANDERSON A. R., STROMINGER J. L., NATHENSON S. G. Chemical structure of teichoic acid from Staphylococcus aureus, strain Copenhagen. J Biol Chem. 1962 Dec;237:3603–3613. [PubMed] [Google Scholar]
  22. STROMINGER J. L., GHUYSEN J. M. ON THE LINKAGE BETWEEN TEICHOIC ACID AND THE GLYCOPEPTIDE IN THE CELL WALL OF STAPHYLOCOCCUS AUREUS. Biochem Biophys Res Commun. 1963 Aug 14;12:418–424. doi: 10.1016/0006-291x(63)90117-7. [DOI] [PubMed] [Google Scholar]
  23. So L. L., Goldstein I. J. Protein-carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide-concanavalin A interaction. J Biol Chem. 1967 Apr 10;242(7):1617–1622. [PubMed] [Google Scholar]
  24. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tomasz A. Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: chanin formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):86–93. doi: 10.1073/pnas.59.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tomasz A., Westphal M. Abnormal autolytic enzyme in a pneumococus with altered teichoic acid composition. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2627–2630. doi: 10.1073/pnas.68.11.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Toon P., Brown P. E., Baddiley J. The lipid-teichoic acid complex in the cytoplasmic membrane of Streptococcus faecalis N.C.I.B. 8191. Biochem J. 1972 Apr;127(2):399–409. doi: 10.1042/bj1270399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VARGA L. Studies on hyaluronic acid prepared from the vitreous body. J Biol Chem. 1955 Dec;217(2):651–658. [PubMed] [Google Scholar]
  29. Van Heijenoort J., Menjon D., Flouret B., Szulmajster J., Laporte J., Batelier G. Cell walls of a teichoic acid deficient mutant of Bacillus subtilis. Eur J Biochem. 1971 Jun 11;20(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01412.x. [DOI] [PubMed] [Google Scholar]
  30. Wicken A. J., Gibbens J. W., Knox K. W. Comparative studies on the isolation of membrane lipoteichoic acid from Lactobacillus fermenti. J Bacteriol. 1973 Jan;113(1):365–372. doi: 10.1128/jb.113.1.365-372.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wise E. M., Jr, Glickman R. S., Teimer E. Teichoic acid hydrolase activity in soil bacteria (Bacillus subtilis-sporulation-phosphodiesterase-polyamines-concanavalin A). Proc Natl Acad Sci U S A. 1972 Jan;69(1):233–237. doi: 10.1073/pnas.69.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. YANKEELOV J. A., Jr SPLIT-COMPARTMENT MIXING CELLS FOR DIFFERENCE SPECTROSCOPY. Anal Biochem. 1963 Sep;6:287–289. doi: 10.1016/0003-2697(63)90138-6. [DOI] [PubMed] [Google Scholar]
  33. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  34. Young F. E. Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2377–2384. doi: 10.1073/pnas.58.6.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES