Abstract
Salmonella typhimurium strain CV123 (ara-9 gal-205 flrB1), isolated as a mutant resistant to trifluoroleucine, has derepressed and constitutive levels of enzymes forming branched-chain amino acids. This strain grows more slowly than the parent at several temperatures, both in minimal medium and nutrient broth. It overproduces and excretes sizeable amounts of leucine, valine, and isoleucine in comparison with the parental strain. Both leuS (coding for leucyl-transfer ribonucleic acid [tRNA]synthetase) and flrB are linked to lip (min 20 to 25) by P1 transduction, whereas only leuS is linked to lip by P22 transduction. Strain CV123 containing an F′ lip+ episome from Escherichia coli has repressed levels of leucine-forming enzymes, indicating that flrB+ is dominant to flrB. Leucyl-tRNA synthetase from strain CV123 appears to be identical to the leucyl-tRNA synthetase in the parent. No differences were detected between strain CV123 and the parent with respect to tRNA acceptor activity for a number of amino acids. Furthermore, there was no large difference between the two strains in the patterns of leucine tRNA isoaccepting species after fractionation on several different columns. Several other flrB strains exhibited temperature-sensitive excretion of leucine, i.e., they excreted leucine at 37 C but not 25 C. In one such strain, excretion at 37 C was correlated with derepression of some enzymes specified by ilv and leu. These latter results suggest that flrB codes for a protein.
Full text
PDF![942](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/1ef90d73c46a/jbacter00342-0188.png)
![943](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/8d843901579e/jbacter00342-0189.png)
![944](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/fd7553089a72/jbacter00342-0190.png)
![945](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/f1e1ac9a6b52/jbacter00342-0191.png)
![946](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/fe3b0f6baed8/jbacter00342-0192.png)
![947](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/04f849469c9c/jbacter00342-0193.png)
![948](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/e3ea4c5cce32/jbacter00342-0194.png)
![949](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/6cc82503324c/jbacter00342-0195.png)
![950](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/89fd79678239/jbacter00342-0196.png)
![951](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4cd/246843/fc632db29817/jbacter00342-0197.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. R., Calvo J. M. A Salmonella typhimurium locus involved in the regulation of isoleucine, valine and leucine biosynthesis. Genetics. 1969 Mar;61(3):539–556. doi: 10.1093/genetics/61.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexander R. R., Calvo J. M., Freundlich M. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Apr;106(1):213–220. doi: 10.1128/jb.106.1.213-220.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartholomew J. C., Calvo J. M. Alpha-isopropylmalate synthase from Salmonella typhimurium. Carboxypeptidase digestion studies of parent and feedback-insensitive enzymes. Biochim Biophys Acta. 1971 Dec 15;250(3):568–576. doi: 10.1016/0005-2744(71)90257-9. [DOI] [PubMed] [Google Scholar]
- Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatt J. M., Pledger W. J., Umbarger H. E. Isoleucine and valine metabolism in Escherichia coli. XX. Multiple forms of acetohydroxy acid synthetase. Biochem Biophys Res Commun. 1972 Jul 25;48(2):444–450. doi: 10.1016/s0006-291x(72)80071-8. [DOI] [PubMed] [Google Scholar]
- Burns R. O., Calvo J., Margolin P., Umbarger H. E. Expression of the leucine operon. J Bacteriol. 1966 Apr;91(4):1570–1576. doi: 10.1128/jb.91.4.1570-1576.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo J. M., Bartholomew J. C., Stieglitz B. I. Fluorometric assay of enzymatic reactions involving acetyl Coenzyme A in aldol condensations. Anal Biochem. 1969 Apr 4;28(1):164–181. doi: 10.1016/0003-2697(69)90168-7. [DOI] [PubMed] [Google Scholar]
- Calvo J. M., Freundlich M., Umbarger H. E. Regulation of branched-chain amino acid biosynthesis in Salmonella typhimurium: isolation of regulatory mutants. J Bacteriol. 1969 Mar;97(3):1272–1282. doi: 10.1128/jb.97.3.1272-1282.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo J. M., Morgolin P., Umbarger H. E. Operator constitutive mutations in the leucine operon of Salmonella typhimurium. Genetics. 1969 Apr;61(4):777–787. doi: 10.1093/genetics/61.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo R. A., Calvo J. M. Lack of end-product inhibition and repression of leucine synthesis in a strain of Salmonella typhimurium. Science. 1967 May 26;156(3778):1107–1109. doi: 10.1126/science.156.3778.1107. [DOI] [PubMed] [Google Scholar]
- FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
- Kline E. L. New amino acid regulatory locus having unusual properties in heterozygous merodiploids. J Bacteriol. 1972 Jun;110(3):1127–1134. doi: 10.1128/jb.110.3.1127-1134.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leis J. P., Keller E. B. N-formylmethionyl-tRNA of wheat chloroplasts. Its synthesis by a wheat transformylase. Biochemistry. 1971 Mar 2;10(5):889–894. doi: 10.1021/bi00781a025. [DOI] [PubMed] [Google Scholar]
- Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. doi: 10.1093/genetics/48.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikulka T. W., Stieglitz B. I., Calvo J. M. Leucyl-transfer ribonucleic acid synthetase from a wild-type and temperature-sensitive mutant of Salmonella typhimurium. J Bacteriol. 1972 Feb;109(2):584–593. doi: 10.1128/jb.109.2.584-593.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANDERSON K. E., DEMEREC M. THE LINKAGE MAP OF SALMONELLA TYPHIMURIUM. Genetics. 1965 Jun;51:897–913. doi: 10.1093/genetics/51.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SARIN P. S., ZAMECNIK P. C. ON THE STABILITY OF AMINOACYL-S-RNA TO NUCLEOPHILIC CATALYSIS. Biochim Biophys Acta. 1964 Dec 16;91:653–655. doi: 10.1016/0926-6550(64)90018-0. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E. Current linkage map of Salmonella typhimurium. Bacteriol Rev. 1970 Jun;34(2):176–193. doi: 10.1128/br.34.2.176-193.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silbert D. F., Fink G. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol. 1966 Dec 28;22(2):335–347. doi: 10.1016/0022-2836(66)90136-7. [DOI] [PubMed] [Google Scholar]
- Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]