Abstract
Six mutants, allelic to ade3, were isolated after mutagenic treatment of a prototrophic strain of yeast. All six grow on medium supplemented with adenine alone and four respond to histidine. Supplementation with adenine plus histidine or methionine inhibits growth, but a mixture of these three is stimulatory. Heteroallelic diploids formed by the new mutants with the standard ade3 can resemble either parent or show an intermediate phenotype. The new mutants, unlike standard ade3, are not fully epistatic to ade2. The activities of three enzymes concerned in tetrahydrofolate metabolism have been assayed in the new and standard ade3 mutants and wild type. The only difference detected between the new and standard ade3 was in the levels of 10-formyltetrahydrofolate synthetase. Activity in the new mutants ranged from 36 to 109% of wild type compared with 10 to 12% in the standard ade3. Possible mechanisms to account for the varied phenotypes at the ade3 locus are discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., MARTIN R. G., GARRY B. J. The first step of histidine biosynthesis. J Biol Chem. 1961 Jul;236:2019–2026. [PubMed] [Google Scholar]
- Ahmed K. A., Woods R. A. A genetic analysis of resistance to nystatin in Saccharomyces cerevisiae. Genet Res. 1967 Apr;9(2):179–193. doi: 10.1017/s0016672300010478. [DOI] [PubMed] [Google Scholar]
- Armitt S., Woods R. A. Purine-excreting mutants of Saccharomyces cerevisiae. I. Isolation and genetic analysis. Genet Res. 1970 Feb;15(1):7–17. doi: 10.1017/s0016672300001324. [DOI] [PubMed] [Google Scholar]
- Jones E. W., Magasanik B. Phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase activity in the adenine-histidine auxotroph AD-3 of S. cerevisiae. Biochem Biophys Res Commun. 1967 Nov 30;29(4):600–604. doi: 10.1016/0006-291x(67)90528-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazowska J., Luzzati M. Biochemical deficiency associated with ad3 mutations in saccharomyces cerevisiae. I. Levels of three enzymes of tetrahydrofolate metabolism. Biochem Biophys Res Commun. 1970 Apr 8;39(1):34–39. doi: 10.1016/0006-291x(70)90753-9. [DOI] [PubMed] [Google Scholar]
- Lazowska J., Luzzati M. Biochemical deficiency associated with ad3 mutations in saccharomyces cerevisiae. II. Separation of two forms of methylenetetrahydrofolate dehydrogenase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):40–45. doi: 10.1016/0006-291x(70)90754-0. [DOI] [PubMed] [Google Scholar]
- Lomax C. A., Woods R. A. Mutant of yeast sensitive to 2,6-diaminopurine. J Bacteriol. 1969 Nov;100(2):817–822. doi: 10.1128/jb.100.2.817-822.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGASANIK B., KARIBIAN D. Purine nucleotide cycles and their metabolic role. J Biol Chem. 1960 Sep;235:2672–2681. [PubMed] [Google Scholar]
- Mazlen A. S., Eaton N. R. Biochemical basis for the adenine requirement of ad3 mutants of Saccharomyces. Biochem Biophys Res Commun. 1967 Mar 9;26(5):590–595. doi: 10.1016/0006-291x(67)90106-4. [DOI] [PubMed] [Google Scholar]
- Woods R. A., Bevan E. A. Interallelic complementation at the ad-2 locus of Saccharomyces cerevisiae. Heredity (Edinb) 1966 Feb;21(1):121–130. doi: 10.1038/hdy.1966.80. [DOI] [PubMed] [Google Scholar]
