Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Jul;107(1):121–129. doi: 10.1128/jb.107.1.121-129.1971

Effect of 2-Deoxyglucose on Cell Wall Formation in Saccharomyces cerevisiae and Its Relation to Cell Growth Inhibition

P Biely 1, Z Krátký 1, J Kovařík 1, Š Bauer 1
PMCID: PMC246894  PMID: 5563864

Abstract

The growth inhibition and the lysis of Saccharomyces cerevisiae caused by 2-deoxy-d-glucose (2-DG) were shown to be a consequence of unbalanced cellular growth and division. The lysis, but not the repression of growth and osmotic fragility of cells, could be suppressed by the addition of mannitol as an osmotic stabilizer. This result, as well as the morphological changes observed in the cells and changes in the chemical composition of the cell walls, showed that S. cerevisiae grown in the presence of 2-DG formed weakened cell walls responsible for the osmotic fragility. Evidence is presented for the first time demonstrating the incorporation of 2-DG into yeast cell wall material. Other data suggest that the inhibition of yeast growth by 2-DG results from an interference of phosphorylated metabolites of 2-DG with metabolic processes of glucose and mannose involved in the synthesis of structural cell wall polysaccharides.

Full text

PDF
121

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon J. S., Davidson E. D., Jones D., Taylor I. F. The location of chitin in the yeast cell wall. Biochem J. 1966 Nov;101(2):36C–38C. doi: 10.1042/bj1010036c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biely P., Bauer S. The formation of guanosine diphosphate-2-deoxy-D-glucose in yeast. Biochim Biophys Acta. 1968 Mar 11;156(2):432–434. doi: 10.1016/0304-4165(68)90281-x. [DOI] [PubMed] [Google Scholar]
  3. CESSI C., PILIEGO F. The determination of amino sugars in the presence of amino acids and glucose. Biochem J. 1960 Dec;77:508–510. doi: 10.1042/bj0770508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHALLINOR S. W., POWER D. M., TONGE R. J. EFFECTS OF INOSITOL-DEFICIENCY ON YEAST WITH PARTICULAR REFERENCE TO CHEMICAL COMPOSITION OF THE CELL AND OF THE CELL WALL. Nature. 1964 Jul 18;203:250–251. doi: 10.1038/203250a0. [DOI] [PubMed] [Google Scholar]
  5. CHUNG C. W., NICKERSON W. J. Polysaccharide syntheses in growing yeasts. J Biol Chem. 1954 May;208(1):395–407. [PubMed] [Google Scholar]
  6. EDDY A. A., WILLIAMSON D. H. Formation of aberrant cell walls and of spores by the growing yeast protoplast. Nature. 1959 Apr 18;183(4668):1101–1104. doi: 10.1038/1831101a0. [DOI] [PubMed] [Google Scholar]
  7. Farkas V., Svoboda A., Bauer S. Inhibitory effect of 2-deoxy-d-glucose on the formation of the cell wall in yeast protoplasts. J Bacteriol. 1969 May;98(2):744–748. doi: 10.1128/jb.98.2.744-748.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farkas V., Svoboda A., Bauer S. Secretion of cell-wall glycoproteins by yeast protoplasts. Effect of 2-deoxy-D-glucose and cycloheximide. Biochem J. 1970 Aug;118(5):755–758. doi: 10.1042/bj1180755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gancedo C., Gancedo J. M., Sols A. Metabolite repression of fructose 1,6-diphosphatase in yeast. Biochem Biophys Res Commun. 1967 Mar 9;26(5):528–531. doi: 10.1016/0006-291x(67)90096-4. [DOI] [PubMed] [Google Scholar]
  10. Garcia Mendoza C., Novaes Ledieu M. Chitin in the new wall of regenerating protoplasts of Candida utilis. Nature. 1968 Dec 7;220(5171):1035–1035. doi: 10.1038/2201035a0. [DOI] [PubMed] [Google Scholar]
  11. HEREDIA C. F., DELAFUENTE G., SOLS A. METABOLIC STUDIES WITH 2-DEOXYHEXOSES. I. MECHANISMS OF INHIBITION OF GROWTH AND FERMENTATION IN BAKER'S YEAST. Biochim Biophys Acta. 1964 May 11;86:216–223. doi: 10.1016/0304-4165(64)90045-5. [DOI] [PubMed] [Google Scholar]
  12. HEREDIA C. F., SOLS A. METABOLIC STUDIES WITH 2-DEOXYHEXOSES. II. RESISTANCE TO 2- DEOXYGLUCOSE IN A YEAST MUTANT. Biochim Biophys Acta. 1964 May 11;86:224–228. doi: 10.1016/0304-4165(64)90046-7. [DOI] [PubMed] [Google Scholar]
  13. Johnson B. F. Dissolution of yeast glucan induced by 2-deoxyglucose. Exp Cell Res. 1968 Jun;50(3):692–694. doi: 10.1016/0014-4827(68)90440-0. [DOI] [PubMed] [Google Scholar]
  14. Johnson B. F. Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis. J Bacteriol. 1968 Mar;95(3):1169–1172. doi: 10.1128/jb.95.3.1169-1172.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Megnet R. Effect of 2-deoxyglucose on Schizosaccharomyces pombe. J Bacteriol. 1965 Oct;90(4):1032–1035. doi: 10.1128/jb.90.4.1032-1035.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Power D. M., Challinor S. W. The effects of inositol-deficiency on the chemical composition of the yeast cell wall. J Gen Microbiol. 1969 Feb;55(2):169–176. doi: 10.1099/00221287-55-2-169. [DOI] [PubMed] [Google Scholar]
  17. WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES