Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Jul;107(1):179–186. doi: 10.1128/jb.107.1.179-186.1971

Enzymes of Carbohydrate Metabolism in Thiobacillus species

Abdul Matin 1, Sydney C Rittenberg 1
PMCID: PMC246902  PMID: 5563867

Abstract

A study was made of enzymes of carbohydrate metabolism in representative thiobacilli grown with and without glucose. The data show that Thiobacillus perometabolis possesses an inducible Entner-Doudoroff pathway and is thus similar to T. intermedius and T. ferrooxidans. T. novellus lacks this pathway. Instead, a non-cyclic pentose phosphate pathway along with the Krebs cycle is apparently the major route of glucose dissimilation in this organism. Glucose does not support or stimulate the growth of strains of T. neapolitanus, T. thioparus, and T. thiooxidans examined, nor does its presence in the growth medium greatly influence their enzymatic constitution. These obligately chemolithotrophic thiobacilli do not possess the Entner-Doudoroff pathway. Their nicotinamide adenine dinucleotide (NAD)-linked isocitrate dehydrogenase activity predominates over their nicotinamide adenine dinucleotide phosphate (NADP)-linked activity; the converse is true for the other thiobacilli. The data suggest that NAD-linked isocitrate dehydrogenase activity in thiobacilli is involved in biosynthetic reactions.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackkolb F., Schlegel H. G. Regulation der Glucose-6-phosphate-Dehydrogenase aus Hydrogenomonas H 16 durch ATP und NADH. Arch Mikrobiol. 1968;63(2):177–196. [PubMed] [Google Scholar]
  2. Borichewski R. M., Umbreit W. W. Growth of Thiobacillus thiooxidans on glucose. Arch Biochem Biophys. 1966 Sep 26;116(1):97–102. doi: 10.1016/0003-9861(66)90017-8. [DOI] [PubMed] [Google Scholar]
  3. Eisenberg R. C., Dobrogosz W. J. Gluconate metabolism in Escherichia coli. J Bacteriol. 1967 Mar;93(3):941–949. doi: 10.1128/jb.93.3.941-949.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GOTTSCHALK G., EBERHARDT U., SCHLEGEL H. G. VERWERTUNG VON FRUCTOSE DURCH HYDROGENOMONAS H 16. (I.) Arch Mikrobiol. 1964 Apr 2;48:95–108. [PubMed] [Google Scholar]
  5. Hampton M. L., Hanson R. S. Regulation of isocitrate dehydrogenase from thiobacullus thiooxidans and Pseudomonas fluorescens. Biochem Biophys Res Commun. 1969 Jul 23;36(2):296–305. doi: 10.1016/0006-291x(69)90329-5. [DOI] [PubMed] [Google Scholar]
  6. Johnson E. J., Abraham S. Enzymes of intermediary carbohydrate metabolism in the obligate autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus. J Bacteriol. 1969 Nov;100(2):962–968. doi: 10.1128/jb.100.2.962-968.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
  8. LONDON J., RITTENBERG S. C. PATH OF SULFUR IN SULFIDE AND THIOSULFATE OXIDATION BY THIOBACILLI. Proc Natl Acad Sci U S A. 1964 Nov;52:1183–1190. doi: 10.1073/pnas.52.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lessie T., Neidhardt F. C. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J Bacteriol. 1967 Apr;93(4):1337–1345. doi: 10.1128/jb.93.4.1337-1345.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. London J., Rittenberg S. C. Thiobacillus perometabolis nov. sp., a non-autotrophic thiobacillus. Arch Mikrobiol. 1967;59(1):218–225. doi: 10.1007/BF00406335. [DOI] [PubMed] [Google Scholar]
  11. Matin A., Rittenberg S. C. Regulation of glucose metabolism in Thiobacillus intermedius. J Bacteriol. 1970 Oct;104(1):239–246. doi: 10.1128/jb.104.1.239-246.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matin A., Rittenberg S. C. Utilization of glucose in heterotrophic media by Thiobacillus intermedius. J Bacteriol. 1970 Oct;104(1):234–238. doi: 10.1128/jb.104.1.234-238.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robertson D. C., McCullough W. G. The glucose catabolism of the genus Brucella. I. Evaluation of pathways. Arch Biochem Biophys. 1968 Sep 20;127(1):263–273. doi: 10.1016/0003-9861(68)90225-7. [DOI] [PubMed] [Google Scholar]
  14. Robertson D. C., McCullough W. G. The glucose catabolism of the genus Brucella. II. Cell-free studies with B. abortus (S-19). Arch Biochem Biophys. 1968 Sep 20;127(1):445–456. doi: 10.1016/0003-9861(68)90249-x. [DOI] [PubMed] [Google Scholar]
  15. SZYMONA M., DOUDOROFF M. Carbohydrate metabolism in Rhodopseudomonas sphreoides. J Gen Microbiol. 1960 Feb;22:167–183. doi: 10.1099/00221287-22-1-167. [DOI] [PubMed] [Google Scholar]
  16. Smith A. J., London J., Stanier R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol. 1967 Oct;94(4):972–983. doi: 10.1128/jb.94.4.972-983.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson J. C., Davidson W. D., Schwabe A. D. Continuous measurement of 14C-labeled substrate oxidation to 14CO2 by isolated tissues: an ionization chamber method. Anal Biochem. 1968 Dec;26(3):341–349. doi: 10.1016/0003-2697(68)90194-2. [DOI] [PubMed] [Google Scholar]
  18. Trüper H. G. Tricarboxylic acid cycle and related enzymes in Hydrogenomonas strain H16G+ grown on various carbon sources. Biochim Biophys Acta. 1965 Dec 16;111(2):565–568. doi: 10.1016/0304-4165(65)90074-7. [DOI] [PubMed] [Google Scholar]
  19. Williams P. J., Watson S. W. Autotrophy in Nitrosocystis oceanus. J Bacteriol. 1968 Nov;96(5):1640–1648. doi: 10.1128/jb.96.5.1640-1648.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zagallo A. C., Wang C. H. Comparative glucose catabolism of Xanthomonas species. J Bacteriol. 1967 Mar;93(3):970–975. doi: 10.1128/jb.93.3.970-975.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES