Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Jul;107(1):203–209. doi: 10.1128/jb.107.1.203-209.1971

Characterization of the Late Steps of Microbial Heme Synthesis: Conversion of Coproporphyrinogen to Protoporphyrin

N J Jacobs 1, J M Jacobs 1, P Brent 1
PMCID: PMC246905  PMID: 4935319

Abstract

Cell-free extracts of various cytochrome-containing, heterotrophic microorganisms were examined for ability to convert coproporphyrinogen to protoporphyrin. Extracts of Escherichia coli and Pseudomonas denitrificans readily accumulated large amounts of protoporphyrin when assayed under aerobic conditions. However, protoporphyrin did not accumulate under either aerobic or anaerobic conditions of assay or in the presence of various supplements in extracts of the aerobe Micrococcus lysodeikticus, the facultative anaerobe Staphylococcus aureus, or the anaerobe Vibrio succinogenes. Protoporphyrin also accumulated when extracts of E. coli and P. denitrificans were incubated aerobically with the early heme precursor, δ-amino levulinic acid (ALA). This protoporphyrin accumulation was markedly stimulated by the iron chelator, o-phenanthroline. Extracts of S. aureus and M. lysodeikticus accumulated coproporphyrin, but not protoporphyrin when incubated with ALA. The enzyme system in extracts of E. coli which converts coproporphyrinogen to protoporphyrin under aerobic conditions of assay was also partially characterized. This conversion was stimulated by the iron chelator, o-phenanthroline, the respiratory inhibitor, cyanide, and the reducing agent, thioglycolate. Dialysis of the extract did not diminish enzyme activity. Certain alternate electron acceptors and nitrite caused a marked inhibition of the conversion. These results indicate that this late step in heme synthesis, the conversion of coproporphyrinogen to protoporphyrin, can be readily demonstrated in extracts of some, but not all, cytochrome-containing bacteria and that the aerobic conversion in E. coli exhibits many characteristics similar to those demonstrated for the aerobic conversion previously studied in liver mitochondria.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ehteshamuddin A. F. Anaerobic formation of protoporphyrin IX from coproporphyrinogen III by bacterial preparations. Biochem J. 1968 Apr;107(3):446–447. doi: 10.1042/bj1070446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frerman F. E., White D. C. Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1868–1874. doi: 10.1128/jb.94.6.1868-1874.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gray C. T., Wimpenny J. W., Hughes D. E., Mossman M. R. Regulation of metabolism in facultative bacteria. I. Structural and functional changes in Escherichia coli associated with shifts between the aerobic and anaerobic states. Biochim Biophys Acta. 1966 Mar 28;117(1):22–32. doi: 10.1016/0304-4165(66)90148-6. [DOI] [PubMed] [Google Scholar]
  4. HEADY R. E., JACOBS N. J., DEIBEL R. H. EFFECT OF HAEMIN SUPPLEMENTATION ON PORPHYRIN ACCUMULATION AND CATALASE SYNTHESIS DURING ANAEROBIC GROWTH OF STAPHYLOCOCCUS. Nature. 1964 Sep 19;203:1285–1286. doi: 10.1038/2031285a0. [DOI] [PubMed] [Google Scholar]
  5. JACOBS N. J., CONTI S. F. EFFECT OF HEMIN ON THE FORMATION OF THE CYTOCHROME SYSTEM OF ANAEROBICALLY GROWN STAPHYLOCOCCUS EPIDERMIDIS. J Bacteriol. 1965 Mar;89:675–679. doi: 10.1128/jb.89.3.675-679.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JACOBS N. J., WOLIN M. J. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. doi: 10.1016/0006-3002(63)91221-6. [DOI] [PubMed] [Google Scholar]
  7. Jacobs N. J., Jacobs J. M., Brent P. Formation of protoporphyrin from coproporphyrinogen in extracts of various bacteria. J Bacteriol. 1970 May;102(2):398–403. doi: 10.1128/jb.102.2.398-403.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobs N. J., Jacobs J. M., Sheng G. S. Effect of oxygen on heme and porphyrin accumulation from delta-aminolevulinic acid by suspensions of anaerobically grown Staphylococcus epidermidis. J Bacteriol. 1969 Jul;99(1):37–41. doi: 10.1128/jb.99.1.37-41.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mori M., Sano S. Protoporphyrin formation from coproporphyrinogen III by Chromatium cell extracts. Biochem Biophys Res Commun. 1968 Aug 21;32(4):610–615. doi: 10.1016/0006-291x(68)90281-7. [DOI] [PubMed] [Google Scholar]
  10. PORRA R. J., JONES O. T. Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem J. 1963 Apr;87:181–185. doi: 10.1042/bj0870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PORRA R. J., LASCELLES J. HAEMOPROTEINS AND HAEM SYNTHESIS IN FACULTATIVE PHOTOSYNTHETIC AND DENITRIFYING BACTERIA. Biochem J. 1965 Jan;94:120–126. doi: 10.1042/bj0940120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. POSTGATE J. R. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol. 1956 Jul;14(3):545–572. doi: 10.1099/00221287-14-3-545. [DOI] [PubMed] [Google Scholar]
  13. Porra R. J., Falk J. E. The enzymic conversion of coproporphyrinogen 3 into protoporphyrin 9. Biochem J. 1964 Jan;90(1):69–75. doi: 10.1042/bj0900069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SANO S., GRANICK S. Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem. 1961 Apr;236:1173–1180. [PubMed] [Google Scholar]
  15. SCHAEFFER P. Recherches sur le métabolisme bactérien des cytochromes et des porphyrines. I. Disparition partielle des cytochromes par culture anaérobie chez certaines bactéries aérobies facultatives. Biochim Biophys Acta. 1952 Sep;9(3):261–270. doi: 10.1016/0006-3002(52)90160-1. [DOI] [PubMed] [Google Scholar]
  16. Sano S. 2,4-Bis-(beta-hydroxypropionic acid) deuteroporphyrinogen IX, a possible intermediate between coproporphyrinogen 3 and protoporphyrin IX. J Biol Chem. 1966 Nov 25;241(22):5276–5283. [PubMed] [Google Scholar]
  17. TOWNSLEY P. M., NEILANDS J. B. The iron and porphyrin metabolism of Micrococcus lysodeikticus. J Biol Chem. 1957 Feb;224(2):695–705. [PubMed] [Google Scholar]
  18. Tait G. H. Coproporphyrinogenase activity in extracts from Rhodopseudomonas spheroides. Biochem Biophys Res Commun. 1969 Sep 24;37(1):116–122. doi: 10.1016/0006-291x(69)90888-2. [DOI] [PubMed] [Google Scholar]
  19. del Batlle A. M., Benson A., Rimington C. Purification and properties of coproporphyrinogenase. Biochem J. 1965 Dec;97(3):731–740. doi: 10.1042/bj0970731. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES