Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Sep;107(3):671–682. doi: 10.1128/jb.107.3.671-682.1971

Some Effects of Temperature on the Growth of F Pili

Charles P Novotny 1, Karen Lavin 1
PMCID: PMC246987  PMID: 4106219

Abstract

The effect of temperature on the production of F pili by an F+ strain of Escherichia coli B/r was studied by electron microscopy and by a technique involving serum-blocking power. The latter method is based on the ability of F pili to adsorb F pili antibody which inhibits male-specific phage infection. The total amount of pili in a sample was estimated by serum-blocking power; the length of F pili and number per cell was determined by electron microscopy. Cell extracts prepared by sonic oscillation lacked serum-blocking power, suggesting that F pili are not present in the cytoplasm. The number of F pili per cell varied with the growth temperature, but the average length of F pili remained constant. Maximum number of pili per cell occurs between 37 and 42 C; below 37 C the number decreases, reaching zero at about 25 C. When cells are grown at 37 C, blended, and resuspended in fresh media at 25 C, they make F pili. These pili are probably assembled from a pool of subunits that were synthesized during growth at 37 C. The rates of assembly at 25 and 37 C, as judged by the rate of increase in length of F pili, are similar. When cells were grown at 25 C and shifted up to 37 C, there was a 30-min lag in pili production followed by a period of rapid outgrowth. When cells were shifted down from 37 to 20 C, outgrowth (assembly) of pili ceased, and approximately 50% of the attached pili were released in 2 min. No release was observed when cells were shifted to 0 C. This suggests that pili may be released from the cell by a mechanism that requires metabolic activity, but not the outgrowth of F pili.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINTON C. C., Jr, GEMSKI P., Jr, CARNAHAN J. A NEW TYPE OF BACTERIAL PILUS GENETICALLY CONTROLLED BY THE FERTILITY FACTOR OF E. COLI K 12 AND ITS ROLE IN CHROMOSOME TRANSFER. Proc Natl Acad Sci U S A. 1964 Sep;52:776–783. doi: 10.1073/pnas.52.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  3. Caro L. G., Schnös M. The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):126–132. doi: 10.1073/pnas.56.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooke M., Meynell E., Lawn A. M. Mutant Hfr strains defective in transfer: restoration by F-like and I-like de-repressed R factors. Genet Res. 1970 Aug;16(1):101–112. doi: 10.1017/s0016672300002317. [DOI] [PubMed] [Google Scholar]
  5. Curtiss R., 3rd Bacterial conjugation. Annu Rev Microbiol. 1969;23:69–136. doi: 10.1146/annurev.mi.23.100169.000441. [DOI] [PubMed] [Google Scholar]
  6. Curtiss R., 3rd, Caro L. G., Allison D. P., Stallions D. R. Early stages of conjugation in Escherichia coli. J Bacteriol. 1969 Nov;100(2):1091–1104. doi: 10.1128/jb.100.2.1091-1104.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirota Y. THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57–64. doi: 10.1073/pnas.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ippen K. A., Valentine R. C. An assay for the male substance (F-pili) of Escherichia coli K-12. Biochem Biophys Res Commun. 1965 Oct 8;21(1):21–27. doi: 10.1016/0006-291x(65)90420-1. [DOI] [PubMed] [Google Scholar]
  9. Ishibashi M. F pilus as f+ antigen. J Bacteriol. 1967 Jan;93(1):379–389. doi: 10.1002/path.1700930144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knolle P., Orskov I. The identity of the f+ antigen and the cellular receptor for the RNA phage fr. Mol Gen Genet. 1967;99(1):109–114. doi: 10.1007/BF00306463. [DOI] [PubMed] [Google Scholar]
  11. Lawn A. M., Meynell G. G., Meynell E., Datta N. Sex pili and the classification of sex factors in the enterobacteriaceae. Nature. 1967 Oct 28;216(5113):343–346. doi: 10.1038/216343a0. [DOI] [PubMed] [Google Scholar]
  12. Lawn A. M. Morphological features of the pili associated with Escherichia coli K 12 carrying R factors or the F factor. J Gen Microbiol. 1966 Nov;45(2):377–383. doi: 10.1099/00221287-45-2-377. [DOI] [PubMed] [Google Scholar]
  13. Marvin D. A., Hohn B. Filamentous bacterial viruses. Bacteriol Rev. 1969 Jun;33(2):172–209. doi: 10.1128/br.33.2.172-209.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meynell E., Meynell G. G., Datta N. Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriol Rev. 1968 Mar;32(1):55–83. doi: 10.1128/br.32.1.55-83.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Novotny C., Carnahan J., Brinton C. C., Jr Mechanical removal of F pili, type I pili, and flagella from Hfr and RTF donor cells and the kinetics of their reappearance. J Bacteriol. 1969 Jun;98(3):1294–1306. doi: 10.1128/jb.98.3.1294-1306.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Novotny C., Knight W. S., Brinton C. C., Jr Inhibition of bacterial conjugation by ribonucleic acid and deoxyribonucleic acid male-specific bacteriophages. J Bacteriol. 1968 Feb;95(2):314–326. doi: 10.1128/jb.95.2.314-326.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ORSKOV I., ORSKOV F. An antigen termed f-plus occurring in F-plus E. coli strains. Acta Pathol Microbiol Scand. 1960;48:37–46. [PubMed] [Google Scholar]
  18. Otsubo E. Transfer-defective mutants of sex factors in Escherichia coli. II. Deletion mutants of an F-prime and deletion mapping of cistrons involved in genetic transfer. Genetics. 1970 Feb;64(2):189–197. doi: 10.1093/genetics/64.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ou J. T., Anderson T. F. Role of pili in bacterial conjugation. J Bacteriol. 1970 Jun;102(3):648–654. doi: 10.1128/jb.102.3.648-654.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paranchych W., Krahn P. M., Bradley R. D. Stages in phage R17 infection. Virology. 1970 Jul;41(3):465–473. doi: 10.1016/0042-6822(70)90168-6. [DOI] [PubMed] [Google Scholar]
  21. Trenkner E., Bonhoeffer F., Gierer A. The fate of the protein component of bacteriophage fd during infection. Biochem Biophys Res Commun. 1967 Sep 27;28(6):932–939. doi: 10.1016/0006-291x(67)90069-1. [DOI] [PubMed] [Google Scholar]
  22. VALENTINE R. C., STRAND M. COMPLEXES OF F-PILI AND RNA BACTERIOPHAGE. Science. 1965 Apr 23;148(3669):511–513. doi: 10.1126/science.148.3669.511. [DOI] [PubMed] [Google Scholar]
  23. Valentine R. C., Wedel H., Ippen K. A. F-pili requirement for RNA bacteriophage adsorption. Biochem Biophys Res Commun. 1965 Nov 22;21(4):277–282. doi: 10.1016/0006-291x(65)90189-0. [DOI] [PubMed] [Google Scholar]
  24. Wendt L. W., Ippen K. A., Valentine R. General properties of F-pili. Biochem Biophys Res Commun. 1966 May 25;23(4):375–380. doi: 10.1016/0006-291x(66)90736-4. [DOI] [PubMed] [Google Scholar]
  25. Wendt L., Mobach H. W. Evidence for two states of F pili. J Bacteriol. 1969 Feb;97(2):640–646. doi: 10.1128/jb.97.2.640-646.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES