Abstract
Aqueous suspensions of Bacillus megaterium QM B1551 spores were heated at temperatures from 75 to 85 C. The rapid initial viability loss, followed by a more gradual, almost exponential decline, was not due to mixed populations with discrete heat resistances. The slight “tailing” below 0.01% survival was not the result of heat adaptation. Loss of viability was more rapid than loss of dipicolinic acid (DPA) and germinability and, although these events could not be correlated by use of simple kinetic plots, they had similar activation energies (80 to 90 kcal/mole). Probability (probit) plots of per cent survival as a function of logarithmic time yielded not the single line expected, if the heat resistances of individuals in the population were log-normally distributed, but two straight lines intersecting at a survival level of 1 to 6%. Probit-intersects occurred at times ranging from 8 min for spores heated at 85 C, to 310 min at 75 C. Probit-intersects for DPA release and loss in germinability occurred at the same time as for survival, but at much higher levels of retention. There appeared to be two subpopulations, both log-normally distributed but with different mechanisms of kill. Ninety-four to 99% of the spores died via injury to the cell-division process but retained germinability; the remaining smaller subpopulation (1 to 6%) was nonviable because of loss of the ability to germinate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDERTON G., THOMPSON P. A., SNELL N. HEAT ADAPTATION AND ION EXCHANGE IN BACILLUS MEGATERIUM SPORES. Science. 1964 Jan 10;143(3602):141–143. doi: 10.1126/science.143.3602.141. [DOI] [PubMed] [Google Scholar]
- Alderton G., Snell N. Bacterial spores: chemical sensitization to heat. Science. 1969 Mar 14;163(3872):1212–1213. doi: 10.1126/science.163.3872.1212. [DOI] [PubMed] [Google Scholar]
- Alderton G., Snell N. Chemical states of bacterial spores: heat resistance and its kinetics at intermediate water activity. Appl Microbiol. 1970 Apr;19(4):565–572. doi: 10.1128/am.19.4.565-572.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUSTA F. F., ORDAL Z. J. USE OF CALCIUM DIPICOLINATE FOR ENUMERATION OF TOTAL VIABLE ENDOSPORE POPULATIONS WITHOUT HEAT ACTIVATION. Appl Microbiol. 1964 Mar;12:106–110. doi: 10.1128/am.12.2.106-110.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards J. L., Jr, Busta F. F., Speck M. L. Heat injury of Bacillus subtilis spores at ultrahigh temperatures. Appl Microbiol. 1965 Nov;13(6):858–864. doi: 10.1128/am.13.6.858-864.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FERNELIUS A. L., WILKES C. E., DEARMON I. A., Jr, LINCOLN R. E. A probit method to interpret thermal inactivation of bacterial spores. J Bacteriol. 1958 Mar;75(3):300–304. doi: 10.1128/jb.75.3.300-304.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANK H. A., CAMPBELL L. L., Jr The nonlogarithmic rate of thermal destruction of spores of Bacillus coagulans. Appl Microbiol. 1957 Jul;5(4):243–248. doi: 10.1128/am.5.4.243-248.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERMIER J. L'influence d'un chauffage ou d'une irradiation y des spores de Bacillus subtilis sur leur germination. C R Hebd Seances Acad Sci. 1959 Jul 6;249(1):195–197. [PubMed] [Google Scholar]
- Holdom R. S., Johnstone K. I. Effect of the method of presentation of the medium on the germination and growth of single spores of Bacillus subtilis. J Appl Bacteriol. 1970 Mar;33(1):256–261. doi: 10.1111/j.1365-2672.1970.tb05251.x. [DOI] [PubMed] [Google Scholar]
- JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
- Koch A. L. The logarithm in biology. 1. Mechanisms generating the log-normal distribution exactly. J Theor Biol. 1966 Nov;12(2):276–290. doi: 10.1016/0022-5193(66)90119-6. [DOI] [PubMed] [Google Scholar]
- Koch A. L. The logarithm in biology. II. Distributions simulating the log-normal. J Theor Biol. 1969 May;23(2):251–268. doi: 10.1016/0022-5193(69)90040-x. [DOI] [PubMed] [Google Scholar]
- LEVINSON H. S., HYATT M. T. Some effects of heat and ionizing radiation on spores of Bacillus megaterium. J Bacteriol. 1960 Oct;80:441–451. doi: 10.1128/jb.80.4.441-451.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinson H. S., Hyatt M. T. Heat activation kinetics of Bacillus megaterium spores. Biochem Biophys Res Commun. 1969 Dec 4;37(6):909–916. doi: 10.1016/0006-291x(69)90217-4. [DOI] [PubMed] [Google Scholar]
- Moats W. A. Kinetics of thermal death of bacteria. J Bacteriol. 1971 Jan;105(1):165–171. doi: 10.1128/jb.105.1.165-171.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murrell W. G., Scott W. J. The heat resistance of bacterial spores at various water activities. J Gen Microbiol. 1966 Jun;43(3):411–425. doi: 10.1099/00221287-43-3-411. [DOI] [PubMed] [Google Scholar]
- RODE L. J., FOSTER J. W. Induced release of dipicolinic acid from spores of Bacillus megaterium. J Bacteriol. 1960 May;79:650–656. doi: 10.1128/jb.79.5.650-656.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahn O. PHYSICAL METHODS OF STERILIZATION OF MICROORGANISMS. Bacteriol Rev. 1945 Mar;9(1):1–47. doi: 10.1128/br.9.1.1-47.1945_1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts T. A. Symposium on bacterial spores: VII. Recovering spores damaged by heat, ionizing radiations or ethylene oxide. J Appl Bacteriol. 1970 Mar;33(1):74–94. doi: 10.1111/j.1365-2672.1970.tb05235.x. [DOI] [PubMed] [Google Scholar]
- Vas K. Symposium on bacterial spores: 13. Problems in thermal processing. J Appl Bacteriol. 1970 Mar;33(1):157–166. doi: 10.1111/j.1365-2672.1970.tb05241.x. [DOI] [PubMed] [Google Scholar]