Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Oct;108(1):132–136. doi: 10.1128/jb.108.1.132-136.1971

Formation of β-Cyanoalanine by O-Acetylserine Sulfhydrylase

Peter A Castric 1, Eric E Conn 1
PMCID: PMC247041  PMID: 5001194

Abstract

Cell-free extracts of Bacillus megaterium form β-cyanoalanine (β-CNA)-14C from Na14CN and l-cysteine, O-acetyl-l-serine or, to a lesser extent, l-serine. However, the presence of cyanide in the growth medium does not increase the capacity of cell extracts to catalyze the formation of β-CNA from cysteine and cyanide. The formation of β-CNA is readily detected in extracts of cells grown in synthetic media with sulfate or l-djenkolic acid as sulfur sources; such cells also exhibit an increased ability to form cysteine when compared with cells grown on cysteine as the sulfur source. β-CNA formation could not be detected in extracts of cells grown on cysteine as the sulfur source. A 40-fold purification of the O-acetyl-serine sulfhydrylase resulted in the co-purification of the β-CNA-forming activity. The sulfhydrylase and the β-CNA-forming activity co-chromatographed on diethyl-aminoethyl cellulose and Sephadex G-100.

Full text

PDF
132

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker M. A., Kredich N. M., Tomkins G. M. The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem. 1969 May 10;244(9):2418–2427. [PubMed] [Google Scholar]
  2. Blumenthal S. G., Hendrickson H. R., Abrol Y. P., Conn E. E. Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J Biol Chem. 1968 Oct 25;243(20):5302–5307. [PubMed] [Google Scholar]
  3. Brysk M. M., Corpe W. A., Hankes L. V. Beta-cyanoalanine formation by Chromobacterium violaceum. J Bacteriol. 1969 Jan;97(1):322–327. doi: 10.1128/jb.97.1.322-327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castric P. A., Strobel G. A. Cyanide metabolism by Bacillus megaterium. J Biol Chem. 1969 Aug 10;244(15):4089–4094. [PubMed] [Google Scholar]
  5. Dunnill P. M., Fowden L. Enzymatic formation of beta-cyanoalanine from cyanide by Escherichia coli extracts. Nature. 1965 Dec 18;208(5016):1206–1207. doi: 10.1038/2081206a0. [DOI] [PubMed] [Google Scholar]
  6. Hendrickson H. R., Conn E. E. Cyanide metabolism in higher plants. IV. Purification and properties of the beta-cyanolanine synthase of blue lupine. J Biol Chem. 1969 May 25;244(10):2632–2640. [PubMed] [Google Scholar]
  7. Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
  8. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  9. Ressler C., Giza Y. H., Nigam S. N. Beta-cyanoalanine, product of cyanide fixation and intermediate in asparagine biosynthesis in certain species of Lathyrus and Vicia. J Am Chem Soc. 1969 May 7;91(10):2766–2775. doi: 10.1021/ja01038a059. [DOI] [PubMed] [Google Scholar]
  10. Ting I. P., Zschoche W. C. Asparagine biosynthesis by cotton roots. Carbon dioxide fixation and cyanide incorporation. Plant Physiol. 1970 Apr;45(4):429–434. doi: 10.1104/pp.45.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES