Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Oct;108(1):353–358. doi: 10.1128/jb.108.1.353-358.1971

Neutral Lipids in the Study of Relationships of Members of the Family Micrococcaceae1

Susan J Morrison a,2, T G Tornabene a, Wesley E Kloos a
PMCID: PMC247073  PMID: 5122809

Abstract

The organisms studied were those of the family Micrococcaceae which cannot participate in genetic exchange with Micrococcus luteus and those whose biochemical and physiological characteristics appear to bridge the genera Staphylococcus and Micrococcus. The hydrocarbon compositions of M. luteus ATCC 4698 and Micrococcus sp. ATCC 398 were shown to be similar to those previously reported for many M. luteus strains, consisting of isomers of branched monoolefins in the range C25 to C31. However, Micrococcus sp. ATCC 398 differed somewhat by having almost all C29 isomers (approximately 88% of the hydrocarbon composition). Micrococcus spp. ATCC 401 and ATCC 146 and M. roseus strains ATCC 412, ATCC 416, and ATCC 516 contained the same type of hydrocarbon patterns, but the predominant hydrocarbons were within a lower distribution range (C23 to C27), similar to Micrococcus sp. ATCC 533 previously reported. The chromatographic profile and carbon range of the hydrocarbons of an atypical strain designated M. candicans ATCC 8456 differed significantly from the hydrocarbon pattern presented above. The hydrocarbons were identified as branched and normal olefins in the range C16 to C22. Studies of several different strains of staphylococci revealed that these organisms do not contain readily detectable amounts of aliphatic hydrocarbons. The members of the family Micrococcaceae have been divided into two major groups based on the presence or absence of hydrocarbons. With the exception of M. candicans ATCC 8456, this division corresponded to the separation of these organisms according to their deoxyribonucleic acid compositions.

Full text

PDF
353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albro P. W., Dittmer J. C. The biochemistry of long-chain, nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis. Biochemistry. 1969 Jan;8(1):394–404. doi: 10.1021/bi00829a055. [DOI] [PubMed] [Google Scholar]
  2. Auletta A. E., Kennedy E. R. Deoxyribonucleic acid base composition of some members of the Micrococcaceae. J Bacteriol. 1966 Jul;92(1):28–34. doi: 10.1002/path.1700920103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAIRD-PARKER A. C. A classification of micrococci and staphylococci based on physiological and biochemical tests. J Gen Microbiol. 1963 Mar;30:409–427. doi: 10.1099/00221287-30-3-409. [DOI] [PubMed] [Google Scholar]
  4. BAIRD-PARKER A. C. THE CLASSIFICATION OF STAPHYLOCOCCI AND MICROCOCCI FROM WORLD-WIDE SOURCES. J Gen Microbiol. 1965 Mar;38:363–387. doi: 10.1099/00221287-38-3-363. [DOI] [PubMed] [Google Scholar]
  5. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  6. Bohácek J., Kocur M., Martinec T. Deoxyribonucleic acid base composition of Micrococcus roseus. Antonie Van Leeuwenhoek. 1969;35(2):185–188. doi: 10.1007/BF02219129. [DOI] [PubMed] [Google Scholar]
  7. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  8. Garrity F. L., Detrick B., Kennedy E. R. Deoxyribonucleic acid base composition in the taxonomy of Staphylococcus. J Bacteriol. 1969 Feb;97(2):557–560. doi: 10.1128/jb.97.2.557-560.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jeffries L., Cawthorne M. A., Harris M., Cook B., Diplock A. T. Menaquinone determination in the taxonomy of micrococcaceae. J Gen Microbiol. 1968 Dec;54(3):365–380. doi: 10.1099/00221287-54-3-365. [DOI] [PubMed] [Google Scholar]
  10. KATES M. SIMPLIFIED PROCEDURES FOR HYDROLYSIS OR METHANOLYSIS OF LIPIDS. J Lipid Res. 1964 Jan;5:132–135. [PubMed] [Google Scholar]
  11. Kloos W. E., Schultes L. M. Transformation in Micrococcus lysodeikticus. J Gen Microbiol. 1969 Feb;55(2):307–317. doi: 10.1099/00221287-55-2-307. [DOI] [PubMed] [Google Scholar]
  12. Kloos W. E. Transformation of Micrococcus lysodeikticus by various members of the family micrococcaceae. J Gen Microbiol. 1969 Dec;59(2):247–255. doi: 10.1099/00221287-59-2-247. [DOI] [PubMed] [Google Scholar]
  13. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  14. Markey S. P., Tornabene T. G. Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava. Lipids. 1971 Mar;6(3):190–195. doi: 10.1007/BF02533037. [DOI] [PubMed] [Google Scholar]
  15. Oró J., Tornabene T. G., Nooner D. W., Gelpi E. Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. J Bacteriol. 1967 Jun;93(6):1811–1818. doi: 10.1128/jb.93.6.1811-1818.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosypal S., Rosypalová A., Horejs J. The classification of micrococci and staphylococci based on their DNA base composition and adansonian analysis. J Gen Microbiol. 1966 Aug;44(2):281–292. doi: 10.1099/00221287-44-2-281. [DOI] [PubMed] [Google Scholar]
  17. Rosypalová A., Bohácek J., Rosypal S. Deoxyribonucleic acid base composition of some micrococci and sarcinae. Antonie Van Leeuwenhoek. 1966;32(2):192–196. doi: 10.1007/BF02097460. [DOI] [PubMed] [Google Scholar]
  18. Schleifer K. H., Kandler O. Amino acid sequence of the murein of Planococcus and other Micrococcaceae. J Bacteriol. 1970 Aug;103(2):387–392. doi: 10.1128/jb.103.2.387-392.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tornabene T. G., Bennett E. O., Oró J. Fatty acid and aliphatic hydrocarbon composition of Sarcina lutea grown in three different media. J Bacteriol. 1967 Aug;94(2):344–348. doi: 10.1002/path.1700940212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tornabene T. G., Gelpi E., Oró J. Identification of fatty acids and aliphatic hydrocarbons in Sarcina lutea by gas chromatography and combined gas chromatography-mass spectrometry. J Bacteriol. 1967 Aug;94(2):333–343. doi: 10.1128/jb.94.2.333-343.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tornabene T. G., Kates M., Gelpi E., Oro J. Occurrence of squalene, di- and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrun. J Lipid Res. 1969 May;10(3):294–303. [PubMed] [Google Scholar]
  22. Tornabene T. G., Morrison S. J., Kloos W. E. Aliphatic hydrocarbon contents of various members of the family Micrococcaceae. Lipids. 1970 Nov;5(11):929–937. doi: 10.1007/BF02531125. [DOI] [PubMed] [Google Scholar]
  23. Tornabene T. G., Oró J. 14-C incorporation into the fatty acids and aliphatic hydrocarbons of Sarcina lutea. J Bacteriol. 1967 Aug;94(2):349–358. doi: 10.1128/jb.94.2.349-358.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES