Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Oct;108(1):459–464. doi: 10.1128/jb.108.1.459-464.1971

Microbial Transformation of Antibiotics: Phosphorylation of Clindamycin by Streptomyces coelicolor Müller1

John H Coats a, Alexander D Argoudelis a
PMCID: PMC247086  PMID: 5166238

Abstract

Addition of clindamycin to whole-cell cultures of Streptomyces coelicolor Müller resulted in the loss of in vitro activity against organisms sensitive to clindamycin. Incubation of such culture filtrates with alkaline phosphatase generated a biologically active material identified as clindamycin. Fermentation broths containing inactivated clindamycin yielded clindamycin 3-phosphate, the structure of which was established by physical-chemical and enzymatic studies. Clindamycin was phosphorylated by lysates and partially purified enzyme preparations from S. coelicolor Müller. These reactions require a ribonucleoside triphosphate and Mg2+. The product of the cell-free reactions was identified as clindamycin 3-phosphate.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argoudelis A. D., Coats J. H., Mason D. J., Sebek O. K. Microbial transformation of antibiotics. 3. Conversion of clindamycin to 1'-demethylclindamycin and clindamycin sulfoxide by Streptomyces species. J Antibiot (Tokyo) 1969 Jul;22(7):309–314. [PubMed] [Google Scholar]
  2. Argoudelis A. D., Coats J. H. Microbial transformation of antibiotics. II. Phosphorylation of lincomycin by Streptomyces species. J Antibiot (Tokyo) 1969 Jul;22(7):341–343. doi: 10.7164/antibiotics.22.341. [DOI] [PubMed] [Google Scholar]
  3. Doi O., Kondo S., Tanaka N., Umezawa H. Purification and properties of kanamycin-phosphorylating enzyme from Pseudomonas aeruginosa. J Antibiot (Tokyo) 1969 Jun;22(6):273–282. doi: 10.7164/antibiotics.22.273. [DOI] [PubMed] [Google Scholar]
  4. Doi O., Miyamoto M., Tanaka N., Umezawa H. Inactivation and phosphorylation of kanamycin by drug-resistant Staphylococcus aureus. Appl Microbiol. 1968 Sep;16(9):1282–1284. doi: 10.1128/am.16.9.1282-1284.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doi O., Ogura M., Tanaka N., Umezawa H. Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of Pseudomonas aeruginoa. Appl Microbiol. 1968 Sep;16(9):1276–1281. doi: 10.1128/am.16.9.1276-1281.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hey A. E., Elbein A. D. Partial prufication and properties of a trehalase from Streptomyces hygroscopicus. J Bacteriol. 1968 Jul;96(1):105–110. doi: 10.1128/jb.96.1.105-110.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kondo S., Okanishi M., Utahara R., Maeda K., Umezawa H. Isolation of kanamycin and paromamine inactivated by E. coli carrying R factor. J Antibiot (Tokyo) 1968 Jan;21(1):22–29. doi: 10.7164/antibiotics.21.22. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Magerlein B. J., Birkenmeyer R. D., Kagan F. Chemical modification of lincomycin. Antimicrob Agents Chemother (Bethesda) 1966;6:727–736. [PubMed] [Google Scholar]
  10. Morozowich W., Lamb D. J., Karnes H. A., Mackellar F. A., Lewis C., Stern K. F., Rowe E. L. Synthesis and bioactivity of lincomycin-2-phosphate. J Pharm Sci. 1969 Dec;58(12):1485–1489. doi: 10.1002/jps.2600581213. [DOI] [PubMed] [Google Scholar]
  11. Okanishi K., Kondo S., Utahara R., Umezawa H. Phosphorylation and inactivation of aminoglycosidic antibiotics by E. coli carrying R factor. J Antibiot (Tokyo) 1968 Jan;21(1):13–21. doi: 10.7164/antibiotics.21.13. [DOI] [PubMed] [Google Scholar]
  12. Ozanne B., Benveniste R., Tipper D., Davies J. Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol. 1969 Nov;100(2):1144–1146. doi: 10.1128/jb.100.2.1144-1146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Umezawa H., Okanishi M., Kondo S., Hamana K., Utahara R., Maeda K., Mitsuhashi S. Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia coli carrying R factor. Science. 1967 Sep 29;157(3796):1559–1561. [PubMed] [Google Scholar]
  15. Yamada T., Tipper D., Davies J. Enzymatic inactivation of streptomycin by R factor-resistant Escherichia coli. Nature. 1968 Jul 20;219(5151):288–291. doi: 10.1038/219288a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES