Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Oct;108(1):601–603. doi: 10.1128/jb.108.1.601-603.1971

Inhibition of Ribonuclease II of Escherichia coli by Sodium Ions, Adenosine-5′-Triphosphate, and Transfer Ribonucleic Acid

P Venkov 1, D Schlessinger 1, D Longo 1
PMCID: PMC247108  PMID: 4941574

Abstract

Ribonuclease II action on polyuridylate is competitively inhibited by transfer ribonucleic acid and noncompetitively inhibited by sodium ions. At low substrate levels, adenosine-5′-triphosphate is also inhibitory.

Full text

PDF
601

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Flessel C. P. Chloramphenicol protects polyribosomes. Biochem Biophys Res Commun. 1968 Aug 13;32(3):438–446. doi: 10.1016/0006-291x(68)90681-5. [DOI] [PubMed] [Google Scholar]
  2. Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
  3. Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
  4. Gold L. M., Schweiger M. Synthesis of phage-specific alpha- and beta-glucosyl transferases directed by T-even DNA in vitro. Proc Natl Acad Sci U S A. 1969 Mar;62(3):892–898. doi: 10.1073/pnas.62.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuwano M., Kwan C. N., Apirion D., Schlessinger D. Ribonuclease V of escherichia coli. I. Dependence on ribosomes and translocation. Proc Natl Acad Sci U S A. 1969 Oct;64(2):693–700. doi: 10.1073/pnas.64.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lelong J. C., Grunberg-Manago M., Dondon J., Gros D., Gros F. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature. 1970 May 9;226(5245):505–510. doi: 10.1038/226505a0. [DOI] [PubMed] [Google Scholar]
  7. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nossal N. G., Singer M. F. The processive degradation of individual polyribonucleotide chains. I. Escherichia coli ribonuclease II. J Biol Chem. 1968 Mar 10;243(5):913–922. [PubMed] [Google Scholar]
  9. SPAHR P. F. PURIFICATION AND PROPERTIES OF RIBONUCLEASE II FROM ESCHERICHIA COLI. J Biol Chem. 1964 Nov;239:3716–3726. [PubMed] [Google Scholar]
  10. SPAHR P. F., SCHLESSINGER D. Beakdown of messenger ribonucleic acid by a potassium-activated phosphodiesterase from Escherichia coli. J Biol Chem. 1963 Jun;238:2251–2253. [PubMed] [Google Scholar]
  11. Singer M. F., Tolbert G. Purification and properties of a potassium-activated phosphodiesterase (RNAase II) from Escherichia coli. Biochemistry. 1965 Jul;4(7):1319–1330. doi: 10.1021/bi00883a016. [DOI] [PubMed] [Google Scholar]
  12. TORRES-GALLARDO J., KERN M. THE SPECIFIC INHIBITION OF THE ENZYMATIC AMINOACYLATION OF VALYL- AND TYROSYL-SRNA BY PERIODATE-OXIDIZED SRNA. Proc Natl Acad Sci U S A. 1965 Jan;53:91–96. doi: 10.1073/pnas.53.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES