Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):621–626. doi: 10.1128/jb.108.2.621-626.1971

Phosphoglucomutase Mutants of Escherichia coli K-12

Sankar Adhya 1, Maxime Schwartz 2
PMCID: PMC247119  PMID: 4942754

Abstract

Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S. L., Shapiro J. A. The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics. 1969 Jun;62(2):231–247. doi: 10.1093/genetics/62.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FUKASAWA T., JOKURA K., KURAHASHI K. A new enzymic defect of galactose metabolism in Escherichia coli K-12 mutants. Biochem Biophys Res Commun. 1962 Apr 3;7:121–125. doi: 10.1016/0006-291x(62)90158-4. [DOI] [PubMed] [Google Scholar]
  3. FUKASAWA T., JOKURA K., KURAHASHI K. MUTATIONS IN ESCHERICHIA COLI THAT AFFECT URIDINE DIPHOSPHATE GLUCOSE PYROPHOSPHORYLASE ACTIVITY AND GALACTOSE FERMENTATION. Biochim Biophys Acta. 1963 Sep 10;74:608–620. doi: 10.1016/0006-3002(63)91412-4. [DOI] [PubMed] [Google Scholar]
  4. Hatfield D., Hofnung M., Schwartz M. Genetic analysis of the maltose A region in Escherichia coli. J Bacteriol. 1969 May;98(2):559–567. doi: 10.1128/jb.98.2.559-567.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOSHI J. G., HANDLER P. PHOSPHOGLUCOMUTASE. I. PURIFICATION AND PROPERTIES OF PHOSPHOGLUCOMUTASE FROM ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:2741–2751. [PubMed] [Google Scholar]
  6. Kalckar H. M., Kurahashi K., Jordan E. HEREDITARY DEFECTS IN GALACTOSE METABOLISM IN ESCHERICHIA COLI MUTANTS, I. DETERMINATION OF ENZYME ACTIVITIES. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1776–1786. doi: 10.1073/pnas.45.12.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kupor S. R., Fraenkel D. G. 6-phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene. J Bacteriol. 1969 Dec;100(3):1296–1301. doi: 10.1128/jb.100.3.1296-1301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MONOD J., TORRIANI A. M. De l'amylomaltase d'Escherichia coli. Ann Inst Pasteur (Paris) 1950 Jan;78(1):65–77. [PubMed] [Google Scholar]
  9. Rapin A. M., Kalckar H. M., Alberico L. The metabolic basis for masking of receptor-sites on E. coli K-12 for C21, a lipopolysaccharide core-specific phage. Arch Biochem Biophys. 1968 Oct;128(1):95–105. doi: 10.1016/0003-9861(68)90011-8. [DOI] [PubMed] [Google Scholar]
  10. SHEDLOVSKY A., BRENNER S. A CHEMICAL BASIS FOR THE HOST-INDUCED MODIFICATION OF T-EVEN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1963 Aug;50:300–305. doi: 10.1073/pnas.50.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SUNDARARAJAN T. A., RAPIN A. M., KALCKAR H. M. Biochemical observations on E. coli mutants defective in uridine diphosphoglucose. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2187–2193. doi: 10.1073/pnas.48.12.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schwartz M. Expression phénotypique et localisation génétique de mutations affectant le métabolisme du maltose chez Escherichia coli K 12. Ann Inst Pasteur (Paris) 1967 Jun;112(6):673–698. [PubMed] [Google Scholar]
  13. Schwartz M., Hofnung M. La maltodextrine phosphorylase d'Escherichia coli. Eur J Biochem. 1967 Sep;2(2):132–145. doi: 10.1111/j.1432-1033.1967.tb00117.x. [DOI] [PubMed] [Google Scholar]
  14. Schwartz M. Location of the maltose A and B loci on the genetic map of Escherichia coli. J Bacteriol. 1966 Oct;92(4):1083–1089. doi: 10.1128/jb.92.4.1083-1089.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwartz M. Sur l'existence chez Escherichia coli K 12 d'une régulation commune à la biosynthèse des récepteurs du bactériophage et au métabolisme du maltose. Ann Inst Pasteur (Paris) 1967 Nov;113(5):685–704. [PubMed] [Google Scholar]
  16. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tu J. I., Jacobson G. R., Graves D. J. Isotopic effects and inhibition of polysaccharide phosphorylase by 1,5-gluconolactone. Relationship to the catalytic mechanism. Biochemistry. 1971 Mar 30;10(7):1229–1236. doi: 10.1021/bi00783a020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES