Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):627–638. doi: 10.1128/jb.108.2.627-638.1971

Characterization of Mutants of Escherichia coli Temperature-Sensitive for Ribonucleic Acid Regulation: an Unusual Phenotype Associated with a Phenylalanyl Transfer Ribonucleic Acid Synthetase Mutant1

Alan G Atherly a, Martha C Suchanek a
PMCID: PMC247120  PMID: 4942755

Abstract

A mutant strain AA-522, temperature-sensitive for protein synthesis, was isolated from a stringent strain (CP-78) of Escherichia coli K-12. The mutant strain has a relaxed phenotype at the nonpermissive growth temperature. Protein synthesis stops completely at 42 C, whereas the rate of ribonucleic acid (RNA) synthesis is maintained at 20% of the 30 C rate. Sucrose-gradient centrifugation analysis of RNA-containing particles formed at 42 C indicated the presence of “relaxed particles.” These particles possess 16S and 23S RNA and are precursors to normal 50S and 30S ribosomal subunits. A search for the temperature-sensitive protein responsible for the halt in protein synthesis implicated phenylalanyl transfer RNA (tRNA) synthetase. Essentially no enzyme activity is detected in vitro at 30 or 40 C. Analysis of phenylalanyl tRNA synthetase activity in revertants of strain AA-522 indicated the presence of intragenic suppressor mutations. Revertants of strain AA-522 analyzed for the relaxed response at 42 C were all stringent; strain AA-522 was stringent at 30 C. These data indicate that a single mutation in phenylalanyl tRNA synthetase is responsible for both a block in protein synthesis and the relaxed phenotype at 42 C.

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOREK E., RYAN A., ROCKENBACH J. Nucleic acid metabolism in relation to the lysogenic phenomenon. J Bacteriol. 1955 Apr;69(4):460–467. doi: 10.1128/jb.69.4.460-467.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen C. M., Ofengand J. Inactivation of the Tu-GTP recognition site in aminoacyl-tRNA by chemical modification of the tRNA. Biochem Biophys Res Commun. 1970 Oct 9;41(1):190–198. doi: 10.1016/0006-291x(70)90487-0. [DOI] [PubMed] [Google Scholar]
  3. Danchin A., Grunberg-Manago M. Differences in binding of oligo C to charged and uncharged tRNA. FEBS Lett. 1970 Sep 7;9(6):327–330. doi: 10.1016/0014-5793(70)80391-x. [DOI] [PubMed] [Google Scholar]
  4. EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ezekiel D. H., Elkins B. N. The stimulation of ribonucleic acid synthesis by ribosome inhibitors in amino acid-starved Escherichia coli. Biochim Biophys Acta. 1968 Sep 24;166(2):466–474. doi: 10.1016/0005-2787(68)90234-7. [DOI] [PubMed] [Google Scholar]
  7. Ezekiel D. H., Valulis B. Control of ribonucleic acid synthesis in Escherichia coli cells with altered transfer ribonucleic acid concentration. Biochim Biophys Acta. 1966 Oct 24;129(1):123–139. doi: 10.1016/0005-2787(66)90014-1. [DOI] [PubMed] [Google Scholar]
  8. Ezekiel D. H., Valulis B. Increase in functional transfer ribonucleic acid during prolonged incubation in chloramphenicol. Biochim Biophys Acta. 1965 Sep 6;108(1):135–136. doi: 10.1016/0005-2787(65)90116-4. [DOI] [PubMed] [Google Scholar]
  9. FANGMAN W. L., NEIDHARDT F. C. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1839–1843. [PubMed] [Google Scholar]
  10. FANGMAN W. L., NEIDHARDT F. C. PROTEIN AND RIBONUCLEIC ACID SYNTHESIS IN A MUTANT OF ESCHERICHIA COLI WITH AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE. J Biol Chem. 1964 Jun;239:1844–1847. [PubMed] [Google Scholar]
  11. Fangman W. L., Nass G., Neidhardt F. C. Immunological and chemical studies of phenylalanyl sRNA synthetase from Escherichia coli. J Mol Biol. 1965 Aug;13(1):202–219. doi: 10.1016/s0022-2836(65)80090-0. [DOI] [PubMed] [Google Scholar]
  12. Fiil N., Friesen J. D. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol. 1968 Feb;95(2):729–731. doi: 10.1128/jb.95.2.729-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flessel C. P., Ralph P., Rich A. Polyribosomes of growing bacteria. Science. 1967 Nov 3;158(3801):658–660. doi: 10.1126/science.158.3801.658. [DOI] [PubMed] [Google Scholar]
  14. Freundlich M. Valyl-Transfer RNA: Role in Repression of the Isoleucine-Valine Enzymes in Escherichia coli. Science. 1967 Aug 18;157(3790):823–825. doi: 10.1126/science.157.3790.823-a. [DOI] [PubMed] [Google Scholar]
  15. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  16. Kaplan S. Correlation between the rate of ribonucleic acid synthesis and the level of valyl transfer ribonucleic acid in mutants of Escherichia coli. J Bacteriol. 1969 May;98(2):579–586. doi: 10.1128/jb.98.2.579-586.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris D. W., DeMoss J. A. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1624–1631. doi: 10.1128/jb.90.6.1624-1631.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams L. S., Freundlich M. Role of valine transfer RNA in control of RNA synthesis in Escherichia coli. Biochim Biophys Acta. 1969 Apr 22;179(2):515–517. doi: 10.1016/0005-2787(69)90064-1. [DOI] [PubMed] [Google Scholar]
  24. Yegian C. D., Stent G. S., Martin E. M. Intracellular condition of Escherichia coli transfer RNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):839–846. doi: 10.1073/pnas.55.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yoshida K., Osawa S. Origin of the protein component of chlormaphenicaol particles in Escherichia coli. J Mol Biol. 1968 May 14;33(3):559–569. doi: 10.1016/0022-2836(68)90306-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES