Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):720–732. doi: 10.1128/jb.108.2.720-732.1971

Acrylamide Gel Electrophoresis of Intracellular Proteins During Early Stages of Sporulation in Bacillus subtilis

Kenneth F Bott 1
PMCID: PMC247131  PMID: 4399643

Abstract

Acrylamide gel electrophoresis of unfractionated cellular extracts of Bacillus subtilis is shown to be an effective method for characterizing many of the changes in protein composition, when coupled with specific histological-type staining reactions. The results obtained here by using extracts from cells at different stages of growth and sporulation are consistent with observations from other laboratories where extensively purified and highly characterized enzymes have been studied. In several instances, the histochemical reactions can be associated with a specific enzymatic function and appear to indicate the presence of multiple molecular forms. In other instances, the data cannot be evaluated in terms of known enzyme function because the specificity of the histochemical analysis is not certain. However, the assays described permit monitoring of electrophoretic changes at the level of individual proteins within sporulating cultures. The results suggest that B. subtilis may contain two “hexokinase-like” enzymes which cease to function before sporulation is initiated. Aldolase and alanine dehydrogenase are detectable as single bands of enzyme activity during vegetative growth but as multiple molecular forms once sporulation has been initiated. Reduced nicotinamide adenine dinucleotide dehydrogenase activity is represented by an entire family of reactive species in these crude extracts, which undergo multiple changes during the early stages of sporulation. Tricarboxylic acid cycle dehydrogenase enzymes and those bands having esterase activity on α-naphthyl acetate show detectable changes in specific activity after cessation of exponential growth. Glucose dehydrogenase is not detectable until the sequence of changes leading to spore formation has progressed for 4 or 5 hr.

Full text

PDF
720

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton D. H., Blankenship L. C. Soluble reduced nicotinamide adenine dinucleotide oxidase from Bacillus cereus T spores and vegetative cells. I. Purification. Can J Microbiol. 1969 Nov;15(11):1309–1312. doi: 10.1139/m69-237. [DOI] [PubMed] [Google Scholar]
  2. BACH J. A., SADOFF H. L. Aerobic sporulating bacteria. I. Glucose dehydrogenase of Bacillus cereus. J Bacteriol. 1962 Apr;83:699–707. doi: 10.1128/jb.83.4.699-707.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borris D. P., Aronson J. N. Relationship of L-alanine and L-glutamate dehydrogenases of Bacillus thuringienses. Biochim Biophys Acta. 1969;191(3):716–718. doi: 10.1016/0005-2744(69)90366-0. [DOI] [PubMed] [Google Scholar]
  4. DOI R. H., HALVORSON H. Comparison of electron transport systems in vegetative cells and spores of Bacillus cereus. J Bacteriol. 1961 Jan;81:51–58. doi: 10.1128/jb.81.1.51-58.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DOI R. H., HALVORSON H. Mechanism of dipicolinic acid stimulation of the soluble reduced diphosphopyridine nucleotide oxidase of spores. J Bacteriol. 1961 Apr;81:642–648. doi: 10.1128/jb.81.4.642-648.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deutscher M. P., Kornberg A. Biochemical studies of bacterial sporulation and germination. 8. Patterns of enzyme development during growth and sporulation of Baccillus subtilis. J Biol Chem. 1968 Sep 25;243(18):4653–4660. [PubMed] [Google Scholar]
  7. Elmerich C., Aubert J. P. Synthesis of glutamate by a glutamine: 2-oxo-glutarate amidotransferase (NADP oxidoreductase) in Bacillus megaterium. Biochem Biophys Res Commun. 1971 Feb 5;42(3):371–376. doi: 10.1016/0006-291x(71)90380-9. [DOI] [PubMed] [Google Scholar]
  8. Falkenberg F., Lehmann F. G., Pfleiderer G. Die LDH-Isoenzyme als Ursache für unspezifische Tetrazoliumsalz-Anfärbungen in Gelzymogrammen ("Nothing dehydrogenase") Clin Chim Acta. 1969 Feb;23(2):265–278. doi: 10.1016/0009-8981(69)90041-2. [DOI] [PubMed] [Google Scholar]
  9. Garber E. D., Rippon J. W. Proteins and enzymes as taxonomic tools. Adv Appl Microbiol. 1968;10:137–154. doi: 10.1016/s0065-2164(08)70191-6. [DOI] [PubMed] [Google Scholar]
  10. HUNTER R. L., MARKERT C. L. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science. 1957 Jun 28;125(3261):1294–1295. doi: 10.1126/science.125.3261.1294-a. [DOI] [PubMed] [Google Scholar]
  11. Hubby J L. Protein Differences in Drosophila. I. Drosophila Melanogaster. Genetics. 1963 Jun;48(6):871–879. doi: 10.1093/genetics/48.6.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  13. Kornberg A., Spudich J. A., Nelson D. L., Deutscher M. P. Origin of proteins in sporulation. Annu Rev Biochem. 1968;37:51–78. doi: 10.1146/annurev.bi.37.070168.000411. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Razin S. Mycoplasma taxonomy studiedy electrophoresis of cell proteins. J Bacteriol. 1968 Sep;96(3):687–694. doi: 10.1128/jb.96.3.687-694.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sadoff H. L., Hitchins A. D., Celikkol E. Properties of fructose 1,6-diphosphate aldolases from spores and vegetative cells of Bacillus cereus. J Bacteriol. 1969 Jun;98(3):1208–1218. doi: 10.1128/jb.98.3.1208-1218.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shaw C. R. Electrophoretic variation in enzymes. Science. 1965 Aug 27;149(3687):936–943. doi: 10.1126/science.149.3687.936. [DOI] [PubMed] [Google Scholar]
  18. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Warren S. C. Sporulation in Bacillus subtilis. Biochemical changes. Biochem J. 1968 Oct;109(5):811–818. doi: 10.1042/bj1090811. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES