Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):760–764. doi: 10.1128/jb.108.2.760-764.1971

Phosphorolysis of 5-Fluoro-2′-Deoxyuridine in Escherichia coli and Its Inhibition by Nucleosides

Ezra Yagil a,1, Arie Rosner b,2
PMCID: PMC247137  PMID: 4256858

Abstract

The effect of ribonucleosides and deoxyribonucleosides on the phosphorolysis of 5-fluoro-2′-deoxyuridine (FUdR) was examined in cells of Escherichia coli. All nucleosides tested except guanosine and deoxyguanosine inhibited phosphorolysis. By using genetically marked strains it was found that in vivo FUdR is a specific substrate of thymidine phosphorylase.

Full text

PDF
760

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRNIE G. D., KROEGER H., HEIDELBERGER C. STUDIES OF FLUORINATED PYRIMIDINES. XVIII. THE DEGRADATION OF 5-FLUORO-2'-DEOXYURIDINE AND RELATED COMPOUNDS BY NUCLEOSIDE PHOSPHORYLASE. Biochemistry. 1963 May-Jun;2:566–572. doi: 10.1021/bi00903a031. [DOI] [PubMed] [Google Scholar]
  2. Beacham I. R., Pritchard R. H. The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli. Mol Gen Genet. 1971;110(4):289–298. doi: 10.1007/BF00438271. [DOI] [PubMed] [Google Scholar]
  3. Boyle J. V., Jones M. E. Effects of ribonucleosides on thymidine incorporation: selective reversal of the inhibition of deoxyribonucleic acid synthesis in thymineless auxotrophs of Escherichia coli. J Bacteriol. 1970 Oct;104(1):264–271. doi: 10.1128/jb.104.1.264-271.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doskocil J., Paces V. The effect of nucleosides on the phosphorolysis of thymidine by normal and phage-infected cells of E. coli. Biochem Biophys Res Commun. 1968 Jan 25;30(2):153–158. doi: 10.1016/0006-291x(68)90463-4. [DOI] [PubMed] [Google Scholar]
  5. ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
  6. Etzold G., Preussel B., Langen P. Structural requirements for the inhibition of uridine-deoxyuridine phosphorylase by thymine nucleosides containing an unnatural carbohydrate moiety. Mol Pharmacol. 1968 Jan;4(1):20–24. [PubMed] [Google Scholar]
  7. Fangman W. L. Specificity and efficiency of thymidine incorporation in Escherichia coli lacking thymidine phosphorylase. J Bacteriol. 1969 Sep;99(3):681–687. doi: 10.1128/jb.99.3.681-687.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HARTMANN K. U., HEIDELBERGER C. Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J Biol Chem. 1961 Nov;236:3006–3013. [PubMed] [Google Scholar]
  9. HEIDELBERGER C., BIRNIE G. D., BOOHAR J., WENTLAND D. FLUORINATED PYRIMIDINES. XX. INHIBITION OF THE NUCLEOSIDE PHOSPHORYLASE CLEAVAGE OF 5-FLUORO-2'-DEOXYURIDINE BY 5-TRIFLUOROMETHYL-2'-DEOXYURIDINE. Biochim Biophys Acta. 1963 Oct 15;76:315–318. [PubMed] [Google Scholar]
  10. HEIDELBERGER C., BOOHAR J. FLUORINATED PYRIMIDINES. 23. FURTHER STUDIES ON NUCLEOSIDE PHOSPHORYLASE. Biochim Biophys Acta. 1964 Dec 16;91:639–641. doi: 10.1016/0926-6550(64)90013-1. [DOI] [PubMed] [Google Scholar]
  11. Heidelberger C. Cancer chemotherapy with purine and pyrimidine analogues. Annu Rev Pharmacol. 1967;7:101–124. doi: 10.1146/annurev.pa.07.040167.000533. [DOI] [PubMed] [Google Scholar]
  12. Hiraga S., Igarashi K., Yura T. A deoxythymidine kinase-deficient mutant of Escherichia coli. I. Isolation and some properties. Biochim Biophys Acta. 1967 Aug 22;145(1):41–51. doi: 10.1016/0005-2787(67)90652-1. [DOI] [PubMed] [Google Scholar]
  13. Imada A., Igarasi S. Ribosyl and deoxyribosyl transfer by bacterial enzyme systems. J Bacteriol. 1967 Nov;94(5):1551–1559. doi: 10.1128/jb.94.5.1551-1559.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KRENITSKY T. A., BARCLAY M., JACQUEZ J. A. SPECIFICITY OF MOUSE URIDINE PHOSPHORYLASE. CHROMATOGRAPHY, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Mar;239:805–812. [PubMed] [Google Scholar]
  15. Munch-Petersen A. On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli. Eur J Biochem. 1968 Nov;6(3):432–442. doi: 10.1111/j.1432-1033.1968.tb00465.x. [DOI] [PubMed] [Google Scholar]
  16. Munch-Petersen A. Thymidine breakdown and thymine uptake in different mutants of Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):228–237. doi: 10.1016/0005-2787(67)90530-8. [DOI] [PubMed] [Google Scholar]
  17. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PONTIS H., DEGERSTEDT G., REICHARD P. Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. Biochim Biophys Acta. 1961 Jul 22;51:138–147. doi: 10.1016/0006-3002(61)91024-1. [DOI] [PubMed] [Google Scholar]
  19. RAZZELL W. E., CASSHYAP P. SUBSTRATE SPECIFICITY AND INDUCTION OF THYMIDINE PHOSPHORYLASE IN ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1789–1793. [PubMed] [Google Scholar]
  20. Rosner A., Yagil E. Incorporation of 5-bromodeoxyuridine into DNA of wild type Escherichia coli and its use for the enrichment of auxotrophic mutants. Mol Gen Genet. 1970;106(3):254–262. doi: 10.1007/BF00340384. [DOI] [PubMed] [Google Scholar]
  21. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yagil E., Rosner A. Effect of adenosine and deoxyadenosine on the incorporation and breakdown of thymidine in Escherichia coli K-12. J Bacteriol. 1970 Aug;103(2):417–421. doi: 10.1128/jb.103.2.417-421.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES