Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):765–769. doi: 10.1128/jb.108.2.765-769.1971

Pigmentation and Acriflavine Resistance in Serratia marcescens

D R Woods a, T R Mosmann a,1, Sally Hanson a, D A Hendry a
PMCID: PMC247138  PMID: 4942763

Abstract

Stable, orange, acriflavine-resistant variants were selected by treatment of a wild-type, red, acriflavine-sensitive strain of Serratia marcescens with acriflavine. Visible, ultraviolet, infrared, and nuclear magnetic resonance spectra of purified pigment from the red strain were identical to those of the pigment from the orange strain, and the orange mutant was not due to a mutation affecting the structure of the pigment, prodigiosin. The color of the red strain was not affected by variations in pH between 5.0 and 8.0, whereas the color of the orange mutant changed from pink to orange over the same pH range. This variation was mimicked by the pH-induced variation in color of prodigiosin purified from either the red, wild-type or the orange, mutant strains. Density-gradient centrifugation of cell fragments after ultrasonic disintegration resulted in characteristic pigmented bands. Biochemical characterization of these pigmented bands showed that they contained pigment and a protein component, but no lipids, polysaccharides, sugars, glucosamine, or phosphates were detected. Further fractionation of these pigmented bands by zone electrophoresis on a sucrose density gradient indicated that some pigment in S. marcescens was specifically attached to protein components.

Full text

PDF
765

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EGGSTEIN M., KREUTZ F. H. Vergleichende Untersuchungen zur quantitativen Eiweissbestimmung im Liquor und eiweissarmen Lösungen. Klin Wochenschr. 1955 Oct 1;33(37-38):879–884. doi: 10.1007/BF01473099. [DOI] [PubMed] [Google Scholar]
  2. Hubbard R., Rimington C. The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem J. 1950 Feb;46(2):220–225. doi: 10.1042/bj0460220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hubert E. G., Potter C. S., Kalmanson G. M., Guze L. B. Pigment formation in L-forms of Serratia marcescens. J Gen Microbiol. 1969 Feb;55(2):165–167. doi: 10.1099/00221287-55-2-165. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Morrison D. A. Prodigiosin synthesis in mutants of Serratia marcesens. J Bacteriol. 1966 Apr;91(4):1599–1604. doi: 10.1128/jb.91.4.1599-1604.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PURKAYASTHA M., WILLIAMS R. P. Association of pigment with the cell envelope of Serratia marcescens (Chromobacterium prodigiosum). Nature. 1960 Jul 23;187:349–350. doi: 10.1038/187349a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES