Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Nov;108(2):777–781. doi: 10.1128/jb.108.2.777-781.1971

Fatty Acid Composition of Cladosporium resinae Grown on Glucose and on Hydrocarbons

J J Cooney 1, C M Proby 1
PMCID: PMC247140  PMID: 5166858

Abstract

Cladosporium resinae was grown in submerged cultures on glucose; on Jet-A commercial aviation fuel; and on a series of n-alkanes, n-decane through n-tetradecane. Cell yield was greatest on glucose and least on Jet-A; n-alkanes were intermediate. Among n-alkanes cell yield decreased as chain length increased, except for n-dodecane, which supported less growth than n-tridecane or n-tetradecane. The total fatty acids of stationary-phase cells were analyzed by gas-liquid chromatography. In all cases the predominant fatty acids were 16:0, 18:1, and 18:2. The fatty acid composition of glucose-grown cells was similar to that of hydrocarbon-grown cells. Cells grown on n-tridecane or n-tetradecane yielded small amounts of acids homologous to the carbon source, but a similar correlation was not noted for n-decane, n-undecane, or n-dodecane. Cells grown on n-undecane or n-tridecane contained more odd-carbon fatty acids than cells grown on the other substrates, and the effect was more pronounced in n-tridecane-grown cells. Thus, the fatty acids of this organism are derived chiefly from de novo synthesis rather than from direct incorporation of oxidized hydrocarbons. The extent of direct incorporation increases as the chain length of the hydrocarbon growth substrate is increased.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird C. W., Molton P. The biochemical status of metabolites of alkane-utilizing Pseudomonas organisms. Biochem J. 1969 Oct;114(4):881–884. doi: 10.1042/bj1140881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman R. D., Mumma R. O. The lipids of Phythium ultimum. Biochim Biophys Acta. 1967 Dec 5;144(3):501–510. doi: 10.1016/0005-2760(67)90038-0. [DOI] [PubMed] [Google Scholar]
  3. Bushnell L. D., Haas H. F. The Utilization of Certain Hydrocarbons by Microorganisms. J Bacteriol. 1941 May;41(5):653–673. doi: 10.1128/jb.41.5.653-673.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIS J. B. MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES. Appl Microbiol. 1964 May;12:210–214. doi: 10.1128/am.12.3.210-214.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunlap K. R., Perry J. J. Effect of Substrate on the Fatty Acid Composition of Hydrocarbon- and Ketone-utilizing Microorganisms. J Bacteriol. 1968 Aug;96(2):318–321. doi: 10.1128/jb.96.2.318-321.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. J Bacteriol. 1967 Dec;94(6):1919–1923. doi: 10.1128/jb.94.6.1919-1923.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edmonds P., Cooney J. J. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soy broth. J Bacteriol. 1969 Apr;98(1):16–22. doi: 10.1128/jb.98.1.16-22.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edmonds P. Selection of test organisms for use in evaluating microbial inhibitors in fuel-water systems. Appl Microbiol. 1965 Sep;13(5):823–824. doi: 10.1128/am.13.5.823-824.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foppen F. H., Gribanovski-Sassu O. Lipids produced by Epicoccum nigrum in submerged culture. Biochem J. 1968 Jan;106(1):97–100. doi: 10.1042/bj1060097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fredricks K. M. Products of the oxidation of n-decane by Pseudomonas aeruginosa and Mycobacterium rhodochrous. Antonie Van Leeuwenhoek. 1967;33(1):41–48. doi: 10.1007/BF02045532. [DOI] [PubMed] [Google Scholar]
  11. Fulk W. K., Shorb M. S. Production of an artifact during methanolysis of lipids by boron trifluoride-methanol. J Lipid Res. 1970 May;11(3):276–277. [PubMed] [Google Scholar]
  12. Iizuka H., Lin H. T., Iida M. Ester formation from n-alkanes by fungi isolated from aircraft fuel. Z Allg Mikrobiol. 1970;10(3):189–196. [PubMed] [Google Scholar]
  13. Klug M. J., Markovetz A. J. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica. J Bacteriol. 1967 Jun;93(6):1847–1852. doi: 10.1128/jb.93.6.1847-1852.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koman V., Betina V., Baráth Z. Fatty acid, lipid and cyanein production by Penicillium cyaneum. Arch Mikrobiol. 1969;65(2):172–180. doi: 10.1007/BF00693319. [DOI] [PubMed] [Google Scholar]
  15. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  16. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J Bacteriol. 1968 Jun;95(6):2102–2107. doi: 10.1128/jb.95.6.2102-2107.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes. J Bacteriol. 1968 Jun;95(6):2108–2111. doi: 10.1128/jb.95.6.2108-2111.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markovetz A. J., Jr, Cazin J., Allen J. E. Assimilation of alkanes and alkenes by fungi. Appl Microbiol. 1968 Mar;16(3):487–489. doi: 10.1128/am.16.3.487-489.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nyns E. J., Auquière J. P., Wiaux A. L. Taxonomic value of the property of fungi to assimilate hydrocarbons. Antonie Van Leeuwenhoek. 1968;34(4):441–457. doi: 10.1007/BF02046466. [DOI] [PubMed] [Google Scholar]
  20. Rambo G. W., Bean G. A. Fatty acids of the mycelia and conidia of Fusarium oxysporum and Fusarium roseum. Can J Microbiol. 1969 Aug;15(8):967–968. doi: 10.1139/m69-171. [DOI] [PubMed] [Google Scholar]
  21. Ratledge C. Microbial conversions of n-alkanes to fatty acids: A new attempt to obtain economical microbial fats and fatty acids. Chem Ind. 1970 Jun 27;26:843–854. [PubMed] [Google Scholar]
  22. Tyrrell D. The fatty acid composition of four entomogenous imperfect fungi. Can J Microbiol. 1969 Jul;15(7):818–820. doi: 10.1139/m69-145. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES