Abstract
Bacillus larvae appears to be unique among related bacilli in that it contains enzymes of the Embden-Meyerhof-Parnas, pentose phosphate, and Entner-Doudoroff pathways. Simultaneous occurrence of enzymes of all three metabolic pathways has not until now been reported in other Bacillus species. Radiorespirometric analyses of specifically labeled glucose catabolism reveal that vegetative cells of B. larvae dissimilate glucose predominately via a direct oxidative route and to a lesser extent by a nonoxidative scheme although specific activities of enzymes of all three pathways are comparable. Predominance of an oxidative pathway is unusual and also has not been reported for other bacilli. Studies on the oxidation of pyruvic, acetic, succinic, and α-ketoglutaric acids show that terminal respiration of cells in transition from vegetative growth to sporulation involves both the tricarboxylic acid and glyoxylic acid cycles. The relationship of these findings to the fastidiousness and oligosporogeny of B. larvae is discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAILEY L., LEE D. C. Bacillus larvae: its cultivation in vitro and its growth in vivo. J Gen Microbiol. 1962 Dec;29:711–717. doi: 10.1099/00221287-29-4-711. [DOI] [PubMed] [Google Scholar]
- Beevers H. Intermediates of the Pentose Phosphate Pathway as Respiratory Substrates. Plant Physiol. 1956 Sep;31(5):339–347. doi: 10.1104/pp.31.5.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. T., Wittenberger C. L. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. J Bacteriol. 1971 May;106(2):456–467. doi: 10.1128/jb.106.2.456-467.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulla L. A., St Julian G., Rhodes R. A., Hesseltine C. W. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells. Can J Microbiol. 1970 Apr;16(4):243–248. doi: 10.1139/m70-045. [DOI] [PubMed] [Google Scholar]
- Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBOWSKI K. M. An o-toluidine method for body-fluid glucose determination. Clin Chem. 1962 May-Jun;8:215–235. [PubMed] [Google Scholar]
- Fortnagel P., Freese E. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol. 1968 Apr;95(4):1431–1438. doi: 10.1128/jb.95.4.1431-1438.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freese E., Klofat W., Galliers E. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim Biophys Acta. 1970 Nov 24;222(2):265–289. doi: 10.1016/0304-4165(70)90115-7. [DOI] [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS CEREUS. J Bacteriol. 1964 Feb;87:377–386. doi: 10.1128/jb.87.2.377-386.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS SUBTILIS. J Bacteriol. 1963 Aug;86:303–311. doi: 10.1128/jb.86.2.303-311.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh S., Ghosh D. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars. Indian J Biochem. 1968 Jun;5(2):49–52. [PubMed] [Google Scholar]
- HORECKER B. L., SMYRNIOTIS P. Z., KLENOW H. The formation of sedoheptulose phosphate. J Biol Chem. 1953 Dec;205(2):661–682. [PubMed] [Google Scholar]
- Hanson R. S., Peterson J. A., Yousten A. A. Unique biochemical events in bacterial sporulation. Annu Rev Microbiol. 1970;24:53–90. doi: 10.1146/annurev.mi.24.100170.000413. [DOI] [PubMed] [Google Scholar]
- Kersters K., De Ley J. The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie Van Leeuwenhoek. 1968;34(4):393–408. doi: 10.1007/BF02046462. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Léjohn H. B., Van Caeseele L., Lees H. Catabolite repression in the facultative chemoautotroph Thiobacillus novellus. J Bacteriol. 1967 Nov;94(5):1484–1491. doi: 10.1128/jb.94.5.1484-1491.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MYLROIE R. L., KATZNELSON H. Carbohydrate metabolism of Bacillus larvae. J Bacteriol. 1957 Aug;74(2):217–221. doi: 10.1128/jb.74.2.217-221.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose R. I. Bacillus larvae isolation, culturing, and vegetative thermal death point. J Invertebr Pathol. 1969 Nov;14(3):411–414. doi: 10.1016/0022-2011(69)90171-2. [DOI] [PubMed] [Google Scholar]
- SOKATCH J. T., GUNSALUS I. C. Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J Bacteriol. 1957 Apr;73(4):452–460. doi: 10.1128/jb.73.4.452-460.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanwal B. D. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehydrogenase. J Biol Chem. 1970 Apr 10;245(7):1626–1631. [PubMed] [Google Scholar]
- Schindler J., Schlegel H. G. Regulation der Glucose-6-phosphat-Dehydrogenase aus verschiedenen Bakterienarten durch ATP. Arch Mikrobiol. 1969;66(1):69–78. [PubMed] [Google Scholar]
- Smith R. L., Beck J. V., Anderson E. J. THE EFFECT OF POLLEN ON THE SPORULATION OF BACILLUS LARVAE (WHITE). J Bacteriol. 1949 Feb;57(2):213–218. doi: 10.1128/jb.57.2.213-218.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WANG C. H., KRACKOV J. K. The catabolic fate of glucose in Bacillus subtilis. J Biol Chem. 1962 Dec;237:3614–3622. [PubMed] [Google Scholar]
