Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Dec;108(3):980–985. doi: 10.1128/jb.108.3.980-985.1971

Incorporation of Radioactive Macromolecular Precursors into Intact Cells and Osmotically Stabilized “Protoplasts” of Streptococcus faecalis

George S Roth 1, Lolita Daneo-Moore 1
PMCID: PMC247177  PMID: 5003181

Abstract

Growing “protoplasts” of Streptococcus faecalis were shown to incorporate newly administered radioactive precursors in the same manner as growing intact streptococci. No observable differences could be found between the size of the leucine precursor pools of the two cultures. The extent of turnover of protein and ribonucleic acid in both “protoplast” and streptococcal cultures appeared to be identical. Finally, the absolute rate of macromolecular biosynthesis was found to be equivalent whether determined on the basis of “new” or “old” label incorporation.

Full text

PDF
980

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCARTHY B. J. The synthesis of ribosomes in E. coli. II. Analysis of the kinetics of tracer incorporation in growing cells. Biophys J. 1962 Jan;2:49–55. doi: 10.1016/s0006-3495(62)86840-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayer M. E. Areas of adhesion between wall and membrane of Escherichia coli. J Gen Microbiol. 1968 Oct;53(3):395–404. doi: 10.1099/00221287-53-3-395. [DOI] [PubMed] [Google Scholar]
  3. Ehrenfeld E. R., Koch A. L. RNA synthesis in penicillin spheroplasts of Escherichia coli. Biochim Biophys Acta. 1968 Nov 20;169(1):44–57. doi: 10.1016/0005-2787(68)90007-5. [DOI] [PubMed] [Google Scholar]
  4. Hutchison H. T., Hartwell L. H. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967 Nov;94(5):1697–1705. doi: 10.1128/jb.94.5.1697-1705.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Roth G. S., Shockman G. D., Daneo-Moore L. Balanced macromolecular biosynthesis in "protoplasts" of Streptococcus faecalis. J Bacteriol. 1971 Mar;105(3):710–717. doi: 10.1128/jb.105.3.710-717.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rubenstein K. E., Nass M. M., Cohen S. S. Synthetic capabilities of plasmolyzed cells and spheroplasts of Escherichia coli. J Bacteriol. 1970 Oct;104(1):443–452. doi: 10.1128/jb.104.1.443-452.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smith K. C., O'Leary M. E. The pitfalls of measuring DNA synthesis kinetics as exemplifed in ultraciolet radiation studies. Biochim Biophys Acta. 1968 Dec 17;169(2):430–438. doi: 10.1016/0005-2787(68)90051-8. [DOI] [PubMed] [Google Scholar]
  9. Swenson P. A., Setlow R. B. Effects of ultraviolet radiation on macromolecular synthesis in Escherichia coli. J Mol Biol. 1966 Jan;15(1):201–219. doi: 10.1016/s0022-2836(66)80221-8. [DOI] [PubMed] [Google Scholar]
  10. Ziegler R. J., Daneo-Moore L. Effects of essential amino acid starvation in Streptococcus faecalis: structural change in the 50S ribosomal subunit. J Bacteriol. 1971 Jan;105(1):190–199. doi: 10.1128/jb.105.1.190-199.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES