Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Dec;108(3):1122–1128. doi: 10.1128/jb.108.3.1122-1128.1971

Catalytic Properties and Regulatory Diversity of Inorganic Pyrophosphatases from Photosynthetic Bacteria

Jobst-Heinrich Klemme a,1, Brigitte Klemme a,1, Howard Gest a
PMCID: PMC247195  PMID: 4333319

Abstract

Soluble inorganic pyrophosphatases of five species of nonsulfur purple bacteria were investigated in respect to reaction kinetics, regulatory behavior, and other characteristics. The enzymes appear to fall into two groups with correlated properties. The pyrophosphatases of Rhodopseudomonas capsulata and R. spheroides have molecular weights of ∼60,000, are stabilized by Co2+, and exhibit simple Michaelis-Menten reaction kinetics. On the other hand, the enzymes of R. palustris, R. gelatinosa, and Rhodospirillum rubrum are larger (molecular weight ∼100,000), require Zn2+ for maintenance of catalytic activity, and show complex reaction kinetics; these pyrophosphatases are activated by free Mg2+ ions and, in the absence of the latter, are inhibited by 2-phosphoglyceric acid. The results described indicate the existence of alternative control patterns for regulation of intracellular turnover of phosphate, which is in part mediated by pyrophosphatases.

Full text

PDF
1122

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  2. Baltscheffsky M., Baltscheffsky H., von Stedingk L. V. Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum . Brookhaven Symp Biol. 1966;19:246–257. [PubMed] [Google Scholar]
  3. Baltscheffsky M. Reversed energy conversion reactions of bacterial photophosphorylation. Arch Biochem Biophys. 1969 Aug;133(1):46–53. doi: 10.1016/0003-9861(69)90486-x. [DOI] [PubMed] [Google Scholar]
  4. Datta P. Regulation of branched biosynthetic pathways in bacteria. Science. 1969 Aug 8;165(3893):556–562. doi: 10.1126/science.165.3893.556. [DOI] [PubMed] [Google Scholar]
  5. Flodgaard H. Isotope derivative method for determination of microquantities of inorganic pyrophosphate in biological material. Eur J Biochem. 1970 Aug;15(2):273–279. doi: 10.1111/j.1432-1033.1970.tb01004.x. [DOI] [PubMed] [Google Scholar]
  6. Horn A., Börnig H., Thiele G. Allosteric properties of the Mg++-dependent inorganic pyrophosphatase in mouse liver cytoplasm. Eur J Biochem. 1967 Sep;2(2):243–249. doi: 10.1111/j.1432-1033.1967.tb00131.x. [DOI] [PubMed] [Google Scholar]
  7. Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. J Biol Chem. 1966 May 10;241(9):1938–1947. [PubMed] [Google Scholar]
  8. KUNITZ M. Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol. 1952 Jan;35(3):423–450. doi: 10.1085/jgp.35.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keister D. L., Minton N. J. ATP synthesis driven by inorganic pyrophosphate in Rhodospirillum rubrum chromatophores. Biochem Biophys Res Commun. 1971 Mar 5;42(5):932–939. doi: 10.1016/0006-291x(71)90520-1. [DOI] [PubMed] [Google Scholar]
  10. Klemme J. H., Gest H. Regulatory properties of an inorganic pyrophosphatase from the photosynthic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1971 Apr;68(4):721–725. doi: 10.1073/pnas.68.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  13. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  14. Tono H., Kornberg A. Biochemical studies of bacterial sporulation. 3. Inorganic pyrophosphatase of vegetative cells and spores of Bacillus subtilis. J Biol Chem. 1967 May 25;242(10):2375–2382. [PubMed] [Google Scholar]
  15. Ware D., Postgate J. R. Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Nature. 1970 Jun 27;226(5252):1250–1251. doi: 10.1038/2261250a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES