Abstract
Data are presented demonstrating that the presence in vivo of adenosine 3′,5′-monophosphate (3′,5′-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5′-monophosphate (5′-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5′-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate–independent enzyme activity to glucose-6-phosphate–dependent activity. It is suggested that one effect of 3′,5′-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barravecchio J., Baumann P., Wright B. Cell volume determinations of Dictyostelium discoideum. Appl Microbiol. 1969 Apr;17(4):641–642. doi: 10.1128/am.17.4.641-642.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann P. Glucokinase of Dictyostelium discoideum. Biochemistry. 1969 Dec;8(12):5011–5015. doi: 10.1021/bi00840a050. [DOI] [PubMed] [Google Scholar]
- Baumann P., Wright B. E. The phosphofructokinase of Dictyostelium discoideum. Biochemistry. 1968 Oct;7(10):3653–3661. doi: 10.1021/bi00850a044. [DOI] [PubMed] [Google Scholar]
- Bonner J. T. Induction of stalk cell differentiation by cyclic AMP in the cellular slime mold Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1970 Jan;65(1):110–113. doi: 10.1073/pnas.65.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chassy B. M., Love L. L., Krichevsky M. I. The acrasin activity of 3',5'-cyclic nucleotides. Proc Natl Acad Sci U S A. 1969 Sep;64(1):296–303. doi: 10.1073/pnas.64.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland S. V., Coe E. L. Activities of glycolytic enzymes during the early stages of differentiation in the cellular slime mold Dictyostelium discoideum. Biochim Biophys Acta. 1968 Feb 1;156(1):44–50. doi: 10.1016/0304-4165(68)90102-5. [DOI] [PubMed] [Google Scholar]
- Cleland S. V., Coe E. L. Conversion of aspartic acid to glucose during culmination of Dictyostelium discoideum. Biochim Biophys Acta. 1969 Dec 30;192(3):446–454. doi: 10.1016/0304-4165(69)90393-6. [DOI] [PubMed] [Google Scholar]
- HIZUKURI S., LARNER J. STUDIES ON UDPG: ALPHA-1,4-GLUCAN ALPHA-4-GLUCOSYLTRANSFERASE. VII. CONVERSION OF THE ENZYME FROM GLUCOSE-6-PHOSPHATE-DEPENDENT TO INDEPENDENT FORM IN LIVER. Biochemistry. 1964 Nov;3:1783–1788. doi: 10.1021/bi00899a034. [DOI] [PubMed] [Google Scholar]
- Jones T. H., Wright B. E. Partial purification and characterization of glycogen phosphorylase from Dictyostelium discoideum. J Bacteriol. 1970 Nov;104(2):754–761. doi: 10.1128/jb.104.2.754-761.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krichevsky M. I., Love L. L., Chassy B. M. Acceleration of morphogenesis in Dictyostelium discoideum by exogenous mononucleotides. J Gen Microbiol. 1969 Aug;57(3):383–389. doi: 10.1099/00221287-57-3-383. [DOI] [PubMed] [Google Scholar]
- LIDDEL G. U., WRIGHT B. E. The effect of glucose on respiration of the differentiating slime mold. Dev Biol. 1961 Jun;3:265–276. doi: 10.1016/0012-1606(61)90047-1. [DOI] [PubMed] [Google Scholar]
- Marshall R., Sargent D., Wright B. E. Glycogen turnover in Dictyostelium discoideum. Biochemistry. 1970 Jul 21;9(15):3087–3094. doi: 10.1021/bi00817a023. [DOI] [PubMed] [Google Scholar]
- Pannbacker R. G. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. I. In vivo measurements. Biochemistry. 1967 May;6(5):1283–1286. doi: 10.1021/bi00857a008. [DOI] [PubMed] [Google Scholar]
- Rothman-Denes L. B., Cabib E. Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):967–974. doi: 10.1073/pnas.66.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHERMAN J. R. Rapid enzyme assay technique utilizing radioactive substrate, ion-exchange paper, and liquid scintillation counting. Anal Biochem. 1963 Jun;5:548–554. doi: 10.1016/0003-2697(63)90075-7. [DOI] [PubMed] [Google Scholar]
- Téllez-Iñn M. T., Torres H. N. Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jun;66(2):459–463. doi: 10.1073/pnas.66.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright B. E. An analysis of metabolism underlying differentiation in Dictyostelium discoideum. J Cell Physiol. 1968 Oct;72(2 Suppl):145+–145+. [PubMed] [Google Scholar]
- Wright B. E., Dahlberg D. Cell wall synthesis in Dictyostelium discoideum. II. Synthesis of soluble glycogen by a cytoplasmic enzyme. Biochemistry. 1967 Jul;6(7):2074–2079. doi: 10.1021/bi00859a026. [DOI] [PubMed] [Google Scholar]
- Wright B. E. The use of kinetic models to analyze differentiation. Behav Sci. 1970 Jan;15(1):37–45. doi: 10.1002/bs.3830150105. [DOI] [PubMed] [Google Scholar]
- Wright B., Simon W., Walsh B. T. A kinetic model of metabolism essential to differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1968 Jun;60(2):644–651. doi: 10.1073/pnas.60.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
