Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jan;109(1):96–105. doi: 10.1128/jb.109.1.96-105.1972

Glucose Degradation, Molar Growth Yields, and Evidence for Oxidative Phosphorylation in Streptococcus agalactiae

M N Mickelson 1
PMCID: PMC247256  PMID: 4550679

Abstract

In a complex medium with the energy source as the limiting nutrient factor and under anaerobic growth conditions, Streptococcus agalactiae fermented 75% of the glucose to lactic acid and the remainder to acetic and formic acids and ethanol. By using the adenosine triphosphate (ATP) yield constant of 10.5, the molar growth yield suggested 2 moles of ATP per mole of glucose from substrate level phosphorylation. Under similar growth conditions, pyruvate was fermented 25% to lactic acid, and the remainder was fermented to acetic and formic acids. The molar growth yield suggested 0.75 mole of ATP per mole of pyruvate from substrate level phosphorylation. Under aerobic growth conditions about 1 mole of oxygen was consumed per mole of glucose; about one-third of the glucose was converted to lactic acid and the remainder to acetic acid, acetoin, and carbon dioxide. Molar growth yields indicated 5 moles of ATP per mole of glucose. Estimates based on products of glucose degradation suggested that about one-half of the ATP was derived from substrate level phosphorylation and one-half from oxidative phosphorylation. Addition of 0.5 m 2,4-dinitrophenol reduced the growth yield to that occurring in the absence of oxygen. Aerobic pyruvate degradation resulted in 30% of the substrate becoming reduced to lactic acid and the remainder being converted to acetic acid and carbon dioxide, with small amounts of formic acid and acetoin. The molar growth yields and products found suggested that 0.70 mole of ATP per mole of pyruvate resulted from substrate level phosphorylation and 0.4 mole per mole of pyruvate resulted from oxidative phosphorylation.

Full text

PDF
96

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. DAWES E. A., FOSTER S. M. The formation of ethanol in Escherichia coli. Biochim Biophys Acta. 1956 Nov;22(2):253–265. doi: 10.1016/0006-3002(56)90148-2. [DOI] [PubMed] [Google Scholar]
  3. DeMOSS R. D., BARD R. C., GUNSALUS I. C. The mechanism of the heterolactic fermentation; a new route of ethanol formation. J Bacteriol. 1951 Oct;62(4):499–511. doi: 10.1128/jb.62.4.499-511.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hernandez E., Johnson M. J. Energy supply and cell yield in aerobically growth microorganisms. J Bacteriol. 1967 Oct;94(4):996–1001. doi: 10.1128/jb.94.4.996-1001.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KOEPSELL H. J., SHARPE E. S. Micro-determination of pyruvic and alpha-keto-glutaric acids. Arch Biochem Biophys. 1952 Jul;38:443–449. doi: 10.1016/0003-9861(52)90050-7. [DOI] [PubMed] [Google Scholar]
  6. Kormancíkov'A V., Kovác L., Vidová M. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim Biophys Acta. 1969 May;180(1):9–17. doi: 10.1016/0005-2728(69)90188-1. [DOI] [PubMed] [Google Scholar]
  7. Mickelson M. N. Aerobic metabolism of Streptococcus agalactiae. J Bacteriol. 1967 Jul;94(1):184–191. doi: 10.1128/jb.94.1.184-191.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mickelson M. N. Phosphorylation and the reduced nicotinamide adenine dinucleotide oxidase reaction in Streptococcus agalactiae. J Bacteriol. 1969 Nov;100(2):895–901. doi: 10.1128/jb.100.2.895-901.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. OXENBURGH M. S., SNOSWELL A. M. USE OF MOLAR GROWTH YIELDS FOR THE EVALUATION OF ENERGY-PRODUCING PATHWAYS IN LACTOBACILLUS PLANTARUM. J Bacteriol. 1965 Mar;89:913–914. doi: 10.1128/jb.89.3.913-914.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Payne W. J. Energy yields and growth of heterotrophs. Annu Rev Microbiol. 1970;24:17–52. doi: 10.1146/annurev.mi.24.100170.000313. [DOI] [PubMed] [Google Scholar]
  11. ROSENBERG H., ENNOR A. H., MORRISON J. F. The estimation of arginine. Biochem J. 1956 May;63(1):153–159. doi: 10.1042/bj0630153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SENEZ J. C. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962 Jun;26:95–107. [PMC free article] [PubMed] [Google Scholar]
  13. Smalley A. J., Jahrling P., Van Demark P. J. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis strain 10Cl. J Bacteriol. 1968 Nov;96(5):1595–1600. doi: 10.1128/jb.96.5.1595-1600.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES