Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jan;109(1):179–185. doi: 10.1128/jb.109.1.179-185.1972

Transport of Lysine and Hydroxylysine in Streptococcus faecalis1

J D Friede a,2, D P Gilboe a,3, K C Triebwasser a, L M Henderson a
PMCID: PMC247265  PMID: 4621625

Abstract

Data are presented which support the view that l-lysine is transported by two systems in Streptococcus faecalis. The system with the higher affinity for l-lysine appears to be specific for l-lysine among the common amino acids and to require an energy source. The second system transports both l-lysine and l-arginine and does not appear to require an energy source. Both of these systems will accept hydroxy-l-lysine as a substrate as shown by the energy requirement for hydroxy-l-lysine transport and by the inhibition of uptake by l-arginine as well as by l-lysine. The affinity of both systems appears to be considerably lower for hydroxy-l-lysine than for l-lysine. A mutant of S. faecalis which is resistant to the growth inhibitory action of hydroxy-l-lysine appears to differ from the parent strain by having a defective l-lysine-specific transport system. In this mutant, hydroxy-l-lysine is not readily transported via the l-lysine-specific system because of the mutation or via the second system because of the high concentration of l-arginine present in the growth medium. This overall lack of transport prevents hydroxy-l-lysine from reaching inhibitory levels within the cell.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
  2. Bernlohr R. W. Changes in amino acid permeation during sporulation. J Bacteriol. 1967 Mar;93(3):1031–1044. doi: 10.1128/jb.93.3.1031-1044.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forrest W. W., Walker D. J. Control of glycolysis in washed suspensions of Streptococcus faecalis. Nature. 1965 Jul 3;207(992):46–48. doi: 10.1038/207046a0. [DOI] [PubMed] [Google Scholar]
  5. Gilboe D. P., Friede J. D., Henderson L. M. Effect of hydroxylysine on the biosynthesis of lysine in Streptococcus faecalis. J Bacteriol. 1968 Mar;95(3):856–863. doi: 10.1128/jb.95.3.856-863.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilboe D. P., Smith W. G., Henderson L. M. Characteristics of two lysine-independent strains of Streptococcus faecalis. J Gen Microbiol. 1969 Aug;57(2):239–245. doi: 10.1099/00221287-57-2-239. [DOI] [PubMed] [Google Scholar]
  7. HAMILTON P. B., ANDERSON R. A. Hydroxylysine: isolation from gelatin and resolution of its diastereoisomers by ion exchange chromatography. J Biol Chem. 1955 Mar;213(1):249–258. [PubMed] [Google Scholar]
  8. Kaback H. R., Stadtman E. R. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):920–927. doi: 10.1073/pnas.55.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Najjar V. A., Gale E. F. The assimilation of amino-acids by bacteria. 9. The passage of lysine across the cell wall of Streptococcus faecalis. Biochem J. 1950 Jan;46(1):91–95. doi: 10.1042/bj0460091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Penrose W. R., Nichoalds G. E., Piperno J. R., Oxender D. L. Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem. 1968 Nov 25;243(22):5921–5928. [PubMed] [Google Scholar]
  11. Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
  12. Reid K. G., Utech N. M., Holden J. T. Multiple transport components for dicarboxylic amino acids in Streptococcus faecalis. J Biol Chem. 1970 Oct 25;245(20):5261–5272. [PubMed] [Google Scholar]
  13. SMITH W. G., HENDERSON L. M. RELATIONSHIPS OF LYSINE AND HYDROXYLYSINE IN STREPTOCOCCUS FAECALIS AND LEUCONOSTOC MESENTEROIDES. J Biol Chem. 1964 Jun;239:1867–1871. [PubMed] [Google Scholar]
  14. SMITH W. G., NEWMAN M., LEACH F. R., HENDERSON L. M. The effect of hydroxylysine on cell wall synthesis and cell stability in Streptococcus faecalis. J Biol Chem. 1962 Apr;237:1198–1202. [PubMed] [Google Scholar]
  15. Shockman G. D., Thompson J. S., Conover M. J. Replacement of Lysine by Hydroxylysine and Its Effects on Cell Lysis in Streptococcus faecalis. J Bacteriol. 1965 Sep;90(3):575–588. doi: 10.1128/jb.90.3.575-588.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TSUNG C. M., SMITH W. G., LEACH F. R., HENDERSON L. M. Hydroxylysine metabolism in Streptococcus faecalis. J Biol Chem. 1962 Apr;237:1194–1197. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES