Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jan;109(1):250–261. doi: 10.1128/jb.109.1.250-261.1972

Deoxyribonucleic Acid Degradation and the Lethal Effect by Myxin in Escherichia coli1

R M Behki a, S M Lesley a
PMCID: PMC247274  PMID: 4550666

Abstract

Exposure of Escherichia coli 15T cells to the antibiotic myxin results in the inhibition of deoxyribonucleic acid (DNA) biosynthesis, degradation of intracellular DNA, and death of the cells. Each of these effects was markedly enhanced when protein synthesis was simultaneously inhibited by chloramphenicol. In the continued presence of chloramphenicol, a brief (1 min) exposure to myxin resulted in a rate of DNA degradation and cell death equivalent to that found in the continued presence of myxin alone. Single-strand breaks were present in the DNA of cells exposed to myxin, but when chloramphenicol was also present the breaks were found much earlier. Degradation of DNA in cells exposed to myxin was found to be distributed randomly in both strands and extended over the genome with no restriction to the vicinity of the replication point. There was no release of DNA from its attachment to the cellular membrane in myxin-exposed cells. The possibility that the chloramphenicol effect is due to the inhibition of repair enzyme synthesis which is stimulated by exposure of the cells to myxin is discussed. These data indicate that the extent of the lethal and metabolic damage to the cells by an exposure to myxin represents the result of competition between damage to and repair of cellular DNA.

Full text

PDF
250

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CONSTANTOPOULOS G., TCHEN T. T. ENHANCEMENT OF MITOMYCIN C-INDUCED BREAKDOWN OF DNA BY INHIBITORS OF PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Mar 23;80:456–462. doi: 10.1016/0926-6550(64)90148-3. [DOI] [PubMed] [Google Scholar]
  2. Cooper S., Weusthoff G. Comment on the use of chloramphenicol to study the initiation of deoxyribonucleic acid synthesis. J Bacteriol. 1971 May;106(2):709–711. doi: 10.1128/jb.106.2.709-711.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Lucia P., Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. doi: 10.1038/2241164a0. [DOI] [PubMed] [Google Scholar]
  4. Deitz W. H., Cook T. M., Goss W. A. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality. J Bacteriol. 1966 Feb;91(2):768–773. doi: 10.1128/jb.91.2.768-773.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donachie W. D., Hobbs D. G. Recovery from "thymineless death" in Escherichia coli 15T. Biochem Biophys Res Commun. 1967 Oct 26;29(2):172–177. doi: 10.1016/0006-291x(67)90582-7. [DOI] [PubMed] [Google Scholar]
  6. ENDO H., AYABE K., AMAKO K., TAKEYA K. INDUCIBLE PHAGE OF ESCHERICHIA COLI 15. Virology. 1965 Mar;25:469–471. doi: 10.1016/0042-6822(65)90067-x. [DOI] [PubMed] [Google Scholar]
  7. Earhart C. F., Tremblay G. Y., Daniels M. J., Schaechter M. DNA replication studied by a new method for the isolation of cell membrane-DNA complexes. Cold Spring Harb Symp Quant Biol. 1968;33:707–710. doi: 10.1101/sqb.1968.033.01.079. [DOI] [PubMed] [Google Scholar]
  8. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gellert M., Little J. W., Oshinsky C. K., Zimmerman S. B. Joining of DNA strands by DNA ligase of E. coli. Cold Spring Harb Symp Quant Biol. 1968;33:21–26. doi: 10.1101/sqb.1968.033.01.007. [DOI] [PubMed] [Google Scholar]
  10. Hanawalt P. C. The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem Photobiol. 1966 Jan;5(1):1–12. [PubMed] [Google Scholar]
  11. Kanner L., Hanawalt P. Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):149–155. doi: 10.1016/0006-291x(70)90770-9. [DOI] [PubMed] [Google Scholar]
  12. Kogoma T., Lark K. G. DNA replication in Escherihia coli: replication in absence of protein synthesis after replication inhibition. J Mol Biol. 1970 Sep 14;52(2):143–164. doi: 10.1016/0022-2836(70)90022-7. [DOI] [PubMed] [Google Scholar]
  13. LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
  14. Lark K. G., Renger H. Initiation of DNA replication in Escherichia coli 15T-: chronological dissection of three physiological processes required for initiation. J Mol Biol. 1969 Jun 14;42(2):221–235. doi: 10.1016/0022-2836(69)90039-4. [DOI] [PubMed] [Google Scholar]
  15. Lesley S. M., Behki R. M., Gillespie D. C. Production of radioactive myxin. Can J Microbiol. 1967 Sep;13(9):1251–1257. doi: 10.1139/m67-170. [DOI] [PubMed] [Google Scholar]
  16. Lesley S. M., Behki R. M. Mode of action of myxin on Escherichia coli. J Bacteriol. 1967 Dec;94(6):1837–1845. doi: 10.1128/jb.94.6.1837-1845.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lesley S. M., Behki R. M. Recovery of metabolic activity in Escherichia coli following limited exposure to myxin. Can J Microbiol. 1971 Oct;17(10):1327–1333. doi: 10.1139/m71-212. [DOI] [PubMed] [Google Scholar]
  18. Masek F., Stefunková E., Sedliaková M. Effect of amino acid starvation on the degradation of DNA in Escherichia coli B/r after UV irradiation. FEBS Lett. 1971 Feb 12;13(1):10–12. doi: 10.1016/0014-5793(71)80652-x. [DOI] [PubMed] [Google Scholar]
  19. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  20. PETTIJOHN D., HANAWALT P. EVIDENCE FOR REPAIR-REPLICATION OF ULTRAVIOLET DAMAGED DNA IN BACTERIA. J Mol Biol. 1964 Aug;9:395–410. doi: 10.1016/s0022-2836(64)80216-3. [DOI] [PubMed] [Google Scholar]
  21. Peterson E. A., Gillespie D. C., Cook F. D. A wide-spectrum antibiotic produced by a species of Sorangium. Can J Microbiol. 1966 Apr;12(2):221–230. doi: 10.1139/m66-031. [DOI] [PubMed] [Google Scholar]
  22. Ramareddy G., Reiter H. Specific loss of newly replicated deoxyribonucleic acid in nalidixic acid-treated Bacillus subtilis 168. J Bacteriol. 1969 Nov;100(2):724–729. doi: 10.1128/jb.100.2.724-729.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reiter H., Ramareddy G. Loss of DNA behind the growing point of thymine-starved Bacillus subtilis 168. J Mol Biol. 1970 Jun 14;50(2):533–548. doi: 10.1016/0022-2836(70)90210-x. [DOI] [PubMed] [Google Scholar]
  24. Sadowski P., Ginsberg B., Yudelevich A., Feiner L., Hurwitz J. Enzymatic mechanisms of the repair and breakage of DNA. Cold Spring Harb Symp Quant Biol. 1968;33:165–177. doi: 10.1101/sqb.1968.033.01.020. [DOI] [PubMed] [Google Scholar]
  25. Sueoka N., Quinn W. G. Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1968;33:695–705. doi: 10.1101/sqb.1968.033.01.078. [DOI] [PubMed] [Google Scholar]
  26. Ward C. B., Glaser D. A. Analysis of the chloramphenicol-sensitive and chloramphenicol-resistant steps in the initiation of DNA synthesis in E. coli B-r. Proc Natl Acad Sci U S A. 1969 Nov;64(3):905–912. doi: 10.1073/pnas.64.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ward C. B., Glaser D. A. Control of initiation of DNA synthesis in Escherichia coli B-r. Proc Natl Acad Sci U S A. 1970 Sep;67(1):255–262. doi: 10.1073/pnas.67.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winshell E. B., Rosenkranz H. S. Nalidixic Acid and the Metabolism of Escherichia coli. J Bacteriol. 1970 Dec;104(3):1168–1175. doi: 10.1128/jb.104.3.1168-1175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES