Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jan;109(1):385–390. doi: 10.1128/jb.109.1.385-390.1972

Purification and Characterization of Phosphoenolpyruvate Carboxylase from Plasmodium berghei

Huey G McDaniel a,1, Patrick M L Siu b
PMCID: PMC247289  PMID: 4621631

Abstract

Phosphoenolpyruvate (PEP) carboxylase was purified over 400-fold from Plasmodium berghei. The purified enzyme was stable in 0.4 m potassium phosphate buffer (pH 7.4) containing 0.5 m glucose, 1 mm ethylenediaminetetraacetic acid (EDTA), and 1 mm MgCl2. It had a molecular weight of 280,000 determined by sucrose density gradient centrifugation in this buffer, but it aggregated and was unstable in the presence of different salts or a more dilute solution of potassium phosphate. The Km for PEP was 2.6 mm and that for Mg2+ was 1.3 mm. The Km for bicarbonate was 2 mm. Citrate, nucleotides, and EDTA inhibited the PEP carboxylase of P. berghei by decreasing the concentration of free magnesium ions, but acetyl-coenzyme A, fructose-1,6-diphosphate, and aspartate did not influence its activity. A chloroquine concentration of 1.8 × 10−4m inhibited the enzyme 50%.

Full text

PDF
385

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHN M., HUGHES T. R., Jr Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem. 1962 Jan;237:176–181. [PubMed] [Google Scholar]
  2. Cohen S. N., Yielding K. L. Inhibition of DNA and RNA polymerase reactions by chloroquine. Proc Natl Acad Sci U S A. 1965 Aug;54(2):521–527. doi: 10.1073/pnas.54.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corwin L. M., Fanning G. R. Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli. J Biol Chem. 1968 Jun 25;243(12):3517–3525. [PubMed] [Google Scholar]
  4. Fitch C. D. Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1181–1187. doi: 10.1073/pnas.64.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fitch C. D. Plasmodium falciparum in owl monkeys: drug resistance and chloroquine binding capacity. Science. 1970 Jul 17;169(3942):289–290. doi: 10.1126/science.169.3942.289. [DOI] [PubMed] [Google Scholar]
  6. Howells R. E. Cytochrome oxidase activity in a normal and some drug-resistant strains of Plasmodium berghei--a cytochemical study. II. Sporogonic stages of a drug-sensitive srain. Ann Trop Med Parasitol. 1970 Jun;64(2):223–225. doi: 10.1080/00034983.1970.11686684. [DOI] [PubMed] [Google Scholar]
  7. Howells R. E., Peters W., Homewood C. A., Warhurst D. C. Theory for the mechanism of chloroquine resistance in rodent malaria. Nature. 1970 Nov 14;228(5272):625–628. doi: 10.1038/228625a0. [DOI] [PubMed] [Google Scholar]
  8. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  9. Maeba P., Sanwal B. D. Phosphoenolpyruvate carboxylase of Salmonella. Some chemical and allosteric properties. J Biol Chem. 1969 May 25;244(10):2549–2557. [PubMed] [Google Scholar]
  10. Maruyama H., Easterday R. L., Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. I. Purification and properties of phosphoenolpyruvate carboxylase. J Biol Chem. 1966 May 25;241(10):2405–2412. [PubMed] [Google Scholar]
  11. Nagarajan K. Metabolism of Plasmodium berghei. I. Krebs cycle. Exp Parasitol. 1968 Feb;22(1):19–26. doi: 10.1016/0014-4894(68)90074-x. [DOI] [PubMed] [Google Scholar]
  12. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  13. Polet H., Conrad M. E. In vitro studies on the amino acid metabolism of Plasmodium knowlesi and the antiplasmodial effect of the isoleucine antagonists. Mil Med. 1969 Sep;134(10):939–944. [PubMed] [Google Scholar]
  14. Polet H., Conrad M. E. Malaria: extracellular amino acid requirements for in vitro growth of erythrocytic forms of Plasmodium knowlesi. Proc Soc Exp Biol Med. 1968 Jan;127(1):251–253. doi: 10.3181/00379727-127-32666. [DOI] [PubMed] [Google Scholar]
  15. Rudzinska M. A., Trager W., Bray R. S. Pinocytotic uptake and the digestion of hemoglobin in malaria parasites. J Protozool. 1965 Nov;12(4):563–576. doi: 10.1111/j.1550-7408.1965.tb03256.x. [DOI] [PubMed] [Google Scholar]
  16. SAMEJIMA T., KAMATA M., SHIBATA K. Dissociation of bovine liver catalase at low pH. J Biochem. 1962 Mar;51:181–187. doi: 10.1093/oxfordjournals.jbchem.a127518. [DOI] [PubMed] [Google Scholar]
  17. SANADI D. R., FLUHARTY A. L. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE. Biochemistry. 1963 May-Jun;2:523–528. doi: 10.1021/bi00903a023. [DOI] [PubMed] [Google Scholar]
  18. Scheibel L. W., Miller J. Glycolytic and cytochrome oxidase activity in Plasmodia. Mil Med. 1969 Sep;134(10):1074–1080. [PubMed] [Google Scholar]
  19. Sherman I. W., Ruble J. A., Ting I. P. Plasmodium lophurae: (U-14C)-glucose catabolism by free Plasmodia and duckling host erythrocytes. Exp Parasitol. 1969 Aug;25(1):181–192. doi: 10.1016/0014-4894(69)90064-2. [DOI] [PubMed] [Google Scholar]
  20. Siddiqui W. A., Schnell J. V., Geiman Q. M. Nutritional requirements for in vitro cultivation of a simian malarial parasite, Plasmodium knowlesi. Mil Med. 1969 Sep;134(10):929–938. [PubMed] [Google Scholar]
  21. Siu P. M. Carbon dioxide fixation in plasmodia and the effect of some antimalarial drugs on the enzyme. Comp Biochem Physiol. 1967 Dec;23(3):785–795. doi: 10.1016/0010-406x(67)90341-6. [DOI] [PubMed] [Google Scholar]
  22. Skelton F. S., Pardini R. S., Heidker J. C., Folkers K. Inhibition of coenzyme Q systems by chloroquine and other antimalarials. J Am Chem Soc. 1968 Sep 11;90(19):5334–5336. doi: 10.1021/ja01021a084. [DOI] [PubMed] [Google Scholar]
  23. TCHEN T. T., VENNESLAND B. Enzymatic carbon dioxide fixation into oxal-acetate in wheat germ. J Biol Chem. 1955 Apr;213(2):533–546. [PubMed] [Google Scholar]
  24. TRAGER W. CULTIVATION AND PHYSIOLOGY OF ERYTHROCYTIC STAGES OF PLASMODIA. Am J Trop Med Hyg. 1964 Jan;13:SUPPL–166. doi: 10.4269/ajtmh.1964.13.162. [DOI] [PubMed] [Google Scholar]
  25. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES