Abstract
Crude extracts from ultraviolet (UV)-irradiated yeast cells compete with UV-irradiated transforming deoxyribonucleic acid (DNA) for photoreactivating enzyme. The amount of competition is taken as a measure of the level of cyclobutyl pyrimidine dimers in the yeast DNA. A calibration of the competition using UV-irradiated calf thymus DNA indicates that an incident UV dose (1,500 ergs/mm2) yielding 1% survivors of wild-type cells produces between 2.5 × 104 to 5 × 104 dimers per cell. Wild-type cells irradiated in the exponential phase of growth remove or alter more than 90% of the dimers within 220 min after irradiation. Pyrimidine dimers induced in stationary-phase wild-type cells appear to remain in the DNA; however, with incubation, they become less photoreactivable in vivo, although remaining photoreactivable in vitro. In contrast, exponentially growing or stationary-phase UV-sensitive cells (rad2-17) show almost no detectable alteration of dimers. We conclude that the UV-sensitive cells lack an early step in the repair of UV-induced pyrimidine dimers.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boling M. E., Setlow J. K. Photoreactivating enzyme in logarithmic-phase and stationary-phase yeast cells. Biochim Biophys Acta. 1967 Sep 26;145(2):502–505. doi: 10.1016/0005-2787(67)90068-8. [DOI] [PubMed] [Google Scholar]
- Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
- Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
- Jannsen S., Lochmann E. -R., Megnet R. Specific incorporation of exogenous thymidine monophosphate into DNA in Saccharomyces cerevisiae. FEBS Lett. 1970 Jun 1;8(3):113–115. doi: 10.1016/0014-5793(70)80239-3. [DOI] [PubMed] [Google Scholar]
- Kaplan J. C., Kushner S. R., Grossman L. Enzymatic repair of DNA, 1. Purification of two enzymes involved in the excision of thymine dimers from ultraviolet-irradiated DNA. Proc Natl Acad Sci U S A. 1969 May;63(1):144–151. doi: 10.1073/pnas.63.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan N. A., Brendel M., Haynes R. H. Supersensitive double mutants in yeast. Mol Gen Genet. 1970;107(4):376–378. doi: 10.1007/BF00441200. [DOI] [PubMed] [Google Scholar]
- Muhammed A. Studies on the yeast photoreactivating enzyme. I. A method for the large scale purification and some properties of the enzyme. J Biol Chem. 1966 Jan 25;241(2):516–523. [PubMed] [Google Scholar]
- RUPERT C. S. Repair of ultraviolet damage in cellular DNA. J Cell Comp Physiol. 1961 Dec;58(3):57–68. doi: 10.1002/jcp.1030580407. [DOI] [PubMed] [Google Scholar]
- Resnick M. A. A photoreactivationless mutant of Saccharomyces cerevisiae. Photochem Photobiol. 1969 Apr;9(4):307–312. doi: 10.1111/j.1751-1097.1969.tb07294.x. [DOI] [PubMed] [Google Scholar]
- Resnick M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. doi: 10.1093/genetics/62.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow J. K., Boling M. E., Bollum F. J. The chemical nature of photoreactivable lesions in DNA. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1430–1436. doi: 10.1073/pnas.53.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow J. K., Bollum F. J. The minimum size of the substrate for yeast photoreactivating enzyme. Biochim Biophys Acta. 1968 Apr 22;157(2):233–237. doi: 10.1016/0005-2787(68)90077-4. [DOI] [PubMed] [Google Scholar]
- Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol. 1966 May;17(1):237–254. doi: 10.1016/s0022-2836(66)80105-5. [DOI] [PubMed] [Google Scholar]
- Setlow R. B. The photochemistry, photobiology, and repair of polynucleotides. Prog Nucleic Acid Res Mol Biol. 1968;8:257–295. doi: 10.1016/s0079-6603(08)60548-6. [DOI] [PubMed] [Google Scholar]
- Steinhart W. L., Herriott R. M. Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae. J Bacteriol. 1968 Nov;96(5):1718–1724. doi: 10.1128/jb.96.5.1718-1724.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauss B. S. DNA repair mechanisms and their relation to mutation and recombination. Curr Top Microbiol Immunol. 1968;44:1–85. [PubMed] [Google Scholar]