Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Mar;109(3):979–986. doi: 10.1128/jb.109.3.979-986.1972

Repair of Pyrimidine Dimer Damage Induced in Yeast by Ultraviolet Light

Michael A Resnick a,1, Jane K Setlow a
PMCID: PMC247317  PMID: 4551759

Abstract

Crude extracts from ultraviolet (UV)-irradiated yeast cells compete with UV-irradiated transforming deoxyribonucleic acid (DNA) for photoreactivating enzyme. The amount of competition is taken as a measure of the level of cyclobutyl pyrimidine dimers in the yeast DNA. A calibration of the competition using UV-irradiated calf thymus DNA indicates that an incident UV dose (1,500 ergs/mm2) yielding 1% survivors of wild-type cells produces between 2.5 × 104 to 5 × 104 dimers per cell. Wild-type cells irradiated in the exponential phase of growth remove or alter more than 90% of the dimers within 220 min after irradiation. Pyrimidine dimers induced in stationary-phase wild-type cells appear to remain in the DNA; however, with incubation, they become less photoreactivable in vivo, although remaining photoreactivable in vitro. In contrast, exponentially growing or stationary-phase UV-sensitive cells (rad2-17) show almost no detectable alteration of dimers. We conclude that the UV-sensitive cells lack an early step in the repair of UV-induced pyrimidine dimers.

Full text

PDF
979

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boling M. E., Setlow J. K. Photoreactivating enzyme in logarithmic-phase and stationary-phase yeast cells. Biochim Biophys Acta. 1967 Sep 26;145(2):502–505. doi: 10.1016/0005-2787(67)90068-8. [DOI] [PubMed] [Google Scholar]
  2. Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
  4. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  5. Jannsen S., Lochmann E. -R., Megnet R. Specific incorporation of exogenous thymidine monophosphate into DNA in Saccharomyces cerevisiae. FEBS Lett. 1970 Jun 1;8(3):113–115. doi: 10.1016/0014-5793(70)80239-3. [DOI] [PubMed] [Google Scholar]
  6. Kaplan J. C., Kushner S. R., Grossman L. Enzymatic repair of DNA, 1. Purification of two enzymes involved in the excision of thymine dimers from ultraviolet-irradiated DNA. Proc Natl Acad Sci U S A. 1969 May;63(1):144–151. doi: 10.1073/pnas.63.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khan N. A., Brendel M., Haynes R. H. Supersensitive double mutants in yeast. Mol Gen Genet. 1970;107(4):376–378. doi: 10.1007/BF00441200. [DOI] [PubMed] [Google Scholar]
  8. Muhammed A. Studies on the yeast photoreactivating enzyme. I. A method for the large scale purification and some properties of the enzyme. J Biol Chem. 1966 Jan 25;241(2):516–523. [PubMed] [Google Scholar]
  9. RUPERT C. S. Repair of ultraviolet damage in cellular DNA. J Cell Comp Physiol. 1961 Dec;58(3):57–68. doi: 10.1002/jcp.1030580407. [DOI] [PubMed] [Google Scholar]
  10. Resnick M. A. A photoreactivationless mutant of Saccharomyces cerevisiae. Photochem Photobiol. 1969 Apr;9(4):307–312. doi: 10.1111/j.1751-1097.1969.tb07294.x. [DOI] [PubMed] [Google Scholar]
  11. Resnick M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. doi: 10.1093/genetics/62.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Setlow J. K., Boling M. E., Bollum F. J. The chemical nature of photoreactivable lesions in DNA. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1430–1436. doi: 10.1073/pnas.53.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Setlow J. K., Bollum F. J. The minimum size of the substrate for yeast photoreactivating enzyme. Biochim Biophys Acta. 1968 Apr 22;157(2):233–237. doi: 10.1016/0005-2787(68)90077-4. [DOI] [PubMed] [Google Scholar]
  14. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol. 1966 May;17(1):237–254. doi: 10.1016/s0022-2836(66)80105-5. [DOI] [PubMed] [Google Scholar]
  16. Setlow R. B. The photochemistry, photobiology, and repair of polynucleotides. Prog Nucleic Acid Res Mol Biol. 1968;8:257–295. doi: 10.1016/s0079-6603(08)60548-6. [DOI] [PubMed] [Google Scholar]
  17. Steinhart W. L., Herriott R. M. Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae. J Bacteriol. 1968 Nov;96(5):1718–1724. doi: 10.1128/jb.96.5.1718-1724.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strauss B. S. DNA repair mechanisms and their relation to mutation and recombination. Curr Top Microbiol Immunol. 1968;44:1–85. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES