Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Mar;109(3):1156–1161. doi: 10.1128/jb.109.3.1156-1161.1972

Factors Affecting the Level of Alanine Racemase in Escherichia coli1

Mary Pulliam Lambert a, Francis C Neuhaus a
PMCID: PMC247338  PMID: 4551748

Abstract

Alanine racemase occupies a key position in the alanine branch of peptidoglycan biosynthesis. The level of this enzyme in Escherichia coli W is a function of the carbon source. For example, growth on l-alanine causes a 25-fold higher level of alanine racemase when compared with growth on glucose. When potential inducers of this enzyme are added to either a glucose or succinate medium, a low specificity is observed with those compounds that cause higher levels of enzyme. Growth of E. coli W on either pyruvate, d-alanine, or l-alanine resulted in lower levels of l- and d-alanine in the internal pool. With each of these carbon sources, the level of alanine racemase was markedly elevated when compared to glucose-grown cells; thus, with single carbon sources, the concentration of alanine in the pool is inversely related to the specific activity of alanine racemase. These observations support derepression as a possible mechanism that gives rise to higher levels of alanine racemase. Since multiple forms of the alanine racemase were not detected in extracts from E. coli W grown on various carbon sources, it would appear that this type of heterogeneity is not a consideration in interpreting the above results.

Full text

PDF
1156

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berberich R., Kaback M., Freese E. D-amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis. J Biol Chem. 1968 Mar 10;243(5):1006–1011. [PubMed] [Google Scholar]
  2. Hsie A. W., Rickenberg H. V. Catabolite repression in Escherichia coli: the role of glucose 6-phosphate. Biochem Biophys Res Commun. 1967 Nov 17;29(3):303–310. doi: 10.1016/0006-291x(67)90453-6. [DOI] [PubMed] [Google Scholar]
  3. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Lynch J. L., Neuhaus F. C. On the mechanism of action of the antibiotic O-carbamyld-serine in Streptococcus faecalis. J Bacteriol. 1966 Jan;91(1):449–460. doi: 10.1128/jb.91.1.449-460.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  7. MANDELSTAM J. The free amino acids in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):103–110. doi: 10.1042/bj0690103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marshall V. P., Sokatch J. R. Oxidation of D-amino acids by a particulate enzyme from Pseudomonas aeruginosa. J Bacteriol. 1968 Apr;95(4):1419–1424. doi: 10.1128/jb.95.4.1419-1424.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neuhaus F. C. Selective inhibition of enzymes utilizing alanine in the biosynthesis of peptidoglycan. Antimicrob Agents Chemother (Bethesda) 1967;7:304–313. [PubMed] [Google Scholar]
  10. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  11. Raunio R., Rosenqvist H. Amino acid pool of Escherichia coli during the different phases of growth. Acta Chem Scand. 1970;24(8):2737–2744. doi: 10.3891/acta.chem.scand.24-2737. [DOI] [PubMed] [Google Scholar]
  12. Rosso G., Takashima K., Adams E. Coenzyme content of purified alanine racemase from Pseudomonas. Biochem Biophys Res Commun. 1969 Jan 6;34(1):134–140. doi: 10.1016/0006-291x(69)90539-7. [DOI] [PubMed] [Google Scholar]
  13. Stadtman E. R. The role of multiple enzymes in the regulation of branched metabolic pathways. Ann N Y Acad Sci. 1968 Jun 14;151(1):516–530. doi: 10.1111/j.1749-6632.1968.tb11911.x. [DOI] [PubMed] [Google Scholar]
  14. UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105–112. doi: 10.1128/jb.73.1.105-112.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wargel R. J., Shadur C. A., Neuhaus F. C. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol. 1970 Sep;103(3):778–788. doi: 10.1128/jb.103.3.778-788.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES